Embeddings, \sim_{α} , and Abelian *P*-groups

S. VanDenDriessche

Department of Mathematics University of Notre Dame

CiE, June 28, 2011

- Given classes of structures, can we determine which has a more difficult classification problem?
- The structures usually form a Polish space, K, in which the equivalence relation, E is definable (in some sense).
- H. Friedman and L. Stanley exploited this to create a Borel reducibility for classes of countable structures.

- Given classes of structures, can we determine which has a more difficult classification problem?
- The structures usually form a Polish space, K, in which the equivalence relation, E is definable (in some sense).
- H. Friedman and L. Stanley exploited this to create a Borel reducibility for classes of countable structures.

- Given classes of structures, can we determine which has a more difficult classification problem?
- The structures usually form a Polish space, K, in which the equivalence relation, E is definable (in some sense).
- H. Friedman and L. Stanley exploited this to create a Borel reducibility for classes of countable structures.

- Given classes of structures, can we determine which has a more difficult classification problem?
- The structures usually form a Polish space, K, in which the equivalence relation, E is definable (in some sense).
- H. Friedman and L. Stanley exploited this to create a Borel reducibility for classes of countable structures.

Knight, et al. considered only computable languages, and structures with universes subsets of ω , in order to formulate an effective analog. We further generalize their definition to allow classification for equivalence relations other than isomorphism.

Definition

A Turing computable embedding of (K, E) into (K', E') is an operator $\Phi = \phi_e$ such that

- for each $A \in K$ there exists $B \in K'$ such that $\Phi(A) = \phi_e^{D(A)} = \chi_{D(B)}$, and
- if $A, A' \in K$, then $AEA' \leftrightarrow \Phi(A)E'\Phi(A')$.

Knight, et al. considered only computable languages, and structures with universes subsets of ω , in order to formulate an effective analog.We further generalize their definition to allow classification for equivalence relations other than isomorphism.

Definition

A Turing computable embedding of (K, E) into (K', E') is an operator $\Phi = \phi_e$ such that

- for each $A \in K$ there exists $B \in K'$ such that $\Phi(A) = \phi_e^{D(A)} = \chi_{D(B)}$, and
- if $A, A' \in K$, then $AEA' \leftrightarrow \Phi(A)E'\Phi(A')$.

Knight, et al. considered only computable languages, and structures with universes subsets of ω , in order to formulate an effective analog. We further generalize their definition to allow classification for equivalence relations other than isomorphism.

Definition

A Turing computable embedding of (K, E) into (K', E') is an operator $\Phi = \phi_e$ such that

- for each $\mathcal{A} \in \mathcal{K}$ there exists $\mathcal{B} \in \mathcal{K}'$ such that $\Phi(\mathcal{A}) = \phi_e^{D(\mathcal{A})} = \chi_{D(\mathcal{B})}$, and
- if $A, A' \in K$, then $AEA' \leftrightarrow \Phi(A)E'\Phi(A')$.

Knight, et al. considered only computable languages, and structures with universes subsets of ω , in order to formulate an effective analog. We further generalize their definition to allow classification for equivalence relations other than isomorphism.

Definition

A Turing computable embedding of (K, E) into (K', E') is an operator $\Phi = \phi_e$ such that

- for each $A \in K$ there exists $B \in K'$ such that $\Phi(A) = \phi_e^{D(A)} = \chi_{D(B)}$, and
- if $A, A' \in K$, then $AEA' \leftrightarrow \Phi(A)E'\Phi(A')$.

- $PF <_{tc} FLO <_{tc} FVS <_{tc} VS <_{tc} LO$.
- For all K, $K \leq_{tc} UG \equiv_{tc} LO$.
- $VS \equiv_{tc} ACF \equiv_{tc} ZS$
- $K \leq_{tc} VS$ if and only if there is a computable sequence $(\phi_n)_{n \in \omega}$ of Σ_2^c sentences in the language of K such that
 - for $A \in K$, and m < n, if $A \models \phi_n$ then $A \models \phi_m$ and
 - for $A, B \in K$, if $A \ncong B$ then there is some n such that ϕ_n is true in only one of A, B.

- $PF <_{tc} FLO <_{tc} FVS <_{tc} VS <_{tc} LO$.
- For all K, $K \leq_{tc} UG \equiv_{tc} LO$.
- $VS \equiv_{tc} ACF \equiv_{tc} ZS$
- $K \leq_{tc} VS$ if and only if there is a computable sequence $(\phi_n)_{n \in \omega}$ of Σ_2^c sentences in the language of K such that
 - for $A \in K$, and m < n, if $A \models \phi_n$ then $A \models \phi_m$ and
 - for $A, B \in K$, if $A \ncong B$ then there is some n such that ϕ_n is true in only one of A, B.

- $PF <_{tc} FLO <_{tc} FVS <_{tc} VS <_{tc} LO$.
- For all K, $K \leq_{tc} UG \equiv_{tc} LO$.
- $VS \equiv_{tc} ACF \equiv_{tc} ZS$
- $K \leq_{tc} VS$ if and only if there is a computable sequence $(\phi_n)_{n \in \omega}$ of Σ_2^c sentences in the language of K such that
 - for $A \in K$, and m < n, if $A \models \phi_n$ then $A \models \phi_m$ and
 - for $A, B \in K$, if $A \ncong B$ then there is some n such that ϕ_n is true in only one of A, B.

- $PF <_{tc} FLO <_{tc} FVS <_{tc} VS <_{tc} LO$.
- For all K, $K \leq_{tc} UG \equiv_{tc} LO$.
- $VS \equiv_{tc} ACF \equiv_{tc} ZS$
- $K \leq_{tc} VS$ if and only if there is a computable sequence $(\phi_n)_{n \in \omega}$ of Σ_2^c sentences in the language of K such that
 - for $A \in K$, and m < n, if $A \models \phi_n$ then $A \models \phi_m$ and
 - for $\mathcal{A}, \mathcal{B} \in \mathcal{K}$, if $\mathcal{A} \ncong \mathcal{B}$ then there is some n such that ϕ_n is true in only one of \mathcal{A}, \mathcal{B} .

Computable Infinitary Sentences

The *computable infinitary formulas* are formulas of $\mathcal{L}_{\omega_1\omega}$ where all disjunction/conjunctions are computably enumerable.

Definition

- The Σ_0^c and Π_0^c formulas are the finitary quantifier-free formulas (we suppose they are always in normal form).
- For a computable ordinal $\alpha > 0$,
 - a Σ_{α}^{c} formula $\phi(\bar{x})$ is a c.e. disjunction of formulas of the form $(\exists \bar{u})\psi(\bar{x},\bar{u})$, where each $\psi \in \Pi_{\beta}^{c}$ for $\beta < \alpha$.
 - a Π_{α}^{c} formula $\phi(\bar{x})$ is a c.e. conjunction of formulas of the form $(\forall \bar{u})\psi(\bar{x},\bar{u})$, where each $\psi \in \Sigma_{\beta}^{c}$ for $\beta < \alpha$.

Note that $neg(\phi)$ is defined in the obvious way.

Computable Infinitary Sentences

The *computable infinitary formulas* are formulas of $\mathcal{L}_{\omega_1\omega}$ where all disjunction/conjunctions are computably enumerable.

Definition

- The Σ^c₀ and Π^c₀ formulas are the finitary quantifier-free formulas (we suppose they are always in normal form).
- For a computable ordinal $\alpha > 0$,
 - a Σ_{α}^{c} formula $\phi(\bar{x})$ is a c.e. disjunction of formulas of the form $(\exists \bar{u})\psi(\bar{x},\bar{u})$, where each $\psi \in \Pi_{\beta}^{c}$ for $\beta < \alpha$.
 - a Π_{α}^{c} formula $\phi(\bar{x})$ is a c.e. conjunction of formulas of the form $(\forall \bar{u})\psi(\bar{x},\bar{u})$, where each $\psi \in \Sigma_{\beta}^{c}$ for $\beta < \alpha$.

Note that $neg(\phi)$ is defined in the obvious way.

The Pull-back Theorem

A powerful tool for showing non-embeddability is:

Theorem (Pull-back Theorem (Knight, et al.)

If $(K,E) \leq_{tc} (K',E')$ via Φ , then for any computable infinitary sentence ϕ in the language of K', we can (effectively) find a computable infinitary sentence ϕ^* in the language of K such that

- for all $A \in K$, $\Phi(A) \models \phi$ if and only if $A \models \phi^*$
- ϕ and ϕ^* have the same complexity.

Note that this also gives necessary conditions for embeddings to exists (i.e. *VS* result).

The Pull-back Theorem

A powerful tool for showing non-embeddability is:

Theorem (Pull-back Theorem (Knight, et al.))

If $(K, E) \leq_{tc} (K', E')$ via Φ , then for any computable infinitary sentence ϕ in the language of K', we can (effectively) find a computable infinitary sentence ϕ^* in the language of K such that

- for all $A \in K$, $\Phi(A) \models \phi$ if and only if $A \models \phi^*$
- ϕ and ϕ^* have the same complexity.

Note that this also gives necessary conditions for embeddings to exists (i.e. *VS* result).

The Pull-back Theorem

A powerful tool for showing non-embeddability is:

Theorem (Pull-back Theorem (Knight, et al.))

If $(K, E) \leq_{tc} (K', E')$ via Φ , then for any computable infinitary sentence ϕ in the language of K', we can (effectively) find a computable infinitary sentence ϕ^* in the language of K such that

- for all $A \in K$, $\Phi(A) \models \phi$ if and only if $A \models \phi^*$
- ϕ and ϕ^* have the same complexity.

Note that this also gives necessary conditions for embeddings to exists (i.e. *VS* result).

- Define inductively: $\mathcal{G}_0 = \mathcal{G}$, $\mathcal{G}_{\beta+1} = p\mathcal{G}_{\beta}$, and $\mathcal{G}_{\lambda} = \bigcap_{\gamma < \lambda} \mathcal{G}_{\gamma}$.
- \mathcal{G} is *divisible* if every $x \in \mathcal{G}$ is divisible by p^n for all n.
- For each \mathcal{G} , there is a length, λ such that $\mathcal{G}_{\lambda} = \mathcal{G}_{\lambda+1}$.
- If $\mathcal{G}_{\lambda} = \{0\}$, we call \mathcal{G} reduced.

- Define inductively: $\mathcal{G}_0 = \mathcal{G}$, $\mathcal{G}_{\beta+1} = p\mathcal{G}_{\beta}$, and $\mathcal{G}_{\lambda} = \bigcap_{\gamma < \lambda} \mathcal{G}_{\gamma}$.
- \mathcal{G} is *divisible* if every $x \in \mathcal{G}$ is divisible by p^n for all n.
- For each \mathcal{G} , there is a length, λ such that $\mathcal{G}_{\lambda} = \mathcal{G}_{\lambda+1}$.
- If $\mathcal{G}_{\lambda} = \{0\}$, we call \mathcal{G} reduced.

- Define inductively: $\mathcal{G}_0 = \mathcal{G}$, $\mathcal{G}_{\beta+1} = p\mathcal{G}_{\beta}$, and $\mathcal{G}_{\lambda} = \cap_{\gamma < \lambda} \mathcal{G}_{\gamma}$.
- \mathcal{G} is divisible if every $x \in \mathcal{G}$ is divisible by p^n for all n.
- For each \mathcal{G} , there is a length, λ such that $\mathcal{G}_{\lambda} = \mathcal{G}_{\lambda+1}$.
- If $\mathcal{G}_{\lambda} = \{0\}$, we call \mathcal{G} reduced.

- Define inductively: $\mathcal{G}_0 = \mathcal{G}$, $\mathcal{G}_{\beta+1} = p\mathcal{G}_{\beta}$, and $\mathcal{G}_{\lambda} = \bigcap_{\gamma < \lambda} \mathcal{G}_{\gamma}$.
- \mathcal{G} is *divisible* if every $x \in \mathcal{G}$ is divisible by p^n for all n.
- For each \mathcal{G} , there is a length, λ such that $\mathcal{G}_{\lambda} = \mathcal{G}_{\lambda+1}$.
- If $\mathcal{G}_{\lambda} = \{0\}$, we call \mathcal{G} reduced.

- Define inductively: $\mathcal{G}_0 = \mathcal{G}$, $\mathcal{G}_{\beta+1} = p\mathcal{G}_{\beta}$, and $\mathcal{G}_{\lambda} = \bigcap_{\gamma < \lambda} \mathcal{G}_{\gamma}$.
- \mathcal{G} is *divisible* if every $x \in \mathcal{G}$ is divisible by p^n for all n.
- For each \mathcal{G} , there is a length, λ such that $\mathcal{G}_{\lambda} = \mathcal{G}_{\lambda+1}$.
- If $\mathcal{G}_{\lambda} = \{0\}$, we call \mathcal{G} reduced.

- Define inductively: $\mathcal{G}_0 = \mathcal{G}$, $\mathcal{G}_{\beta+1} = p\mathcal{G}_{\beta}$, and $\mathcal{G}_{\lambda} = \bigcap_{\gamma < \lambda} \mathcal{G}_{\gamma}$.
- \mathcal{G} is *divisible* if every $x \in \mathcal{G}$ is divisible by p^n for all n.
- For each \mathcal{G} , there is a length, λ such that $\mathcal{G}_{\lambda} = \mathcal{G}_{\lambda+1}$.
- If $\mathcal{G}_{\lambda} = \{0\}$, we call \mathcal{G} reduced.

Invariants

- Let $P_{\beta}(\mathcal{G}) := \{x \in \mathcal{G}_{\beta} : px = 0\}.$
- Note that $P_{\beta}(\mathcal{G})/P_{\beta+1}(\mathcal{G})$ is a \mathbb{Z}_p -vector space, and let $u_{\beta}(\mathcal{G})$ be its dimension.

Theorem (Ulm

Two countable, reduced Abelian p-groups are isomorphic if and only if they have the same Ulm invariants.

Invariants

- Let $P_{\beta}(\mathcal{G}) := \{ x \in \mathcal{G}_{\beta} : px = 0 \}.$
- Note that $P_{\beta}(\mathcal{G})/P_{\beta+1}(\mathcal{G})$ is a \mathbb{Z}_p -vector space, and let $u_{\beta}(\mathcal{G})$ be its dimension.

Theorem (Ulm)

Two countable, reduced Abelian p-groups are isomorphic if and only if they have the same Ulm invariants.

Invariants

- Let $P_{\beta}(\mathcal{G}) := \{ x \in \mathcal{G}_{\beta} : px = 0 \}.$
- Note that $P_{\beta}(\mathcal{G})/P_{\beta+1}(\mathcal{G})$ is a \mathbb{Z}_p -vector space, and let $u_{\beta}(\mathcal{G})$ be its dimension.

Theorem (Ulm)

Two countable, reduced Abelian p-groups are isomorphic if and only if they have the same Ulm invariants.

Khisamiev's Theorem

The following special case of a theorem of N. Khisamiev will prove useful.

Theorem (Khisamiev)

If G is a X"-computable reduced Abelian p-group, then there is an X-computable reduced Abelian p-group H, such that

- \bullet $H_{\omega} \cong G$
- 2 $U_n(H) = \infty$ for all $n \in \omega$
- Given an index for G, we can compute an index for H.

Khisamiev's Theorem

The following special case of a theorem of N. Khisamiev will prove useful.

Theorem (Khisamiev)

If G is a X"-computable reduced Abelian p-group, then there is an X-computable reduced Abelian p-group H, such that

- $\mathbf{0}$ $H_{\omega} \cong G$
- 2 $U_n(H) = \infty$ for all $n \in \omega$
- Given an index for G, we can compute an index for H.

Motivated by the importance of Σ_{α}^{c} sentences in many examples, we define the following equivalence relation.

Definition

In any class K, satisfying our conventions, we define the equivalence relation

$$\mathcal{A} \sim_{\alpha} \mathcal{B} \leftrightarrow (\forall \phi \in \Sigma_{\alpha}^{c})(\mathcal{A} \models \phi \leftrightarrow \mathcal{B} \models \phi).$$

Note that $A \cong \mathcal{B} \to (\forall \alpha) \mathcal{A} \sim_{\alpha} \mathcal{B}$, but the reverse implication does not hold.

Motivated by the importance of Σ_{α}^{c} sentences in many examples, we define the following equivalence relation.

Definition

In any class K, satisfying our conventions, we define the equivalence relation

$$\mathcal{A} \sim_{\alpha} \mathcal{B} \leftrightarrow (\forall \phi \in \Sigma_{\alpha}^{\mathbf{c}})(\mathcal{A} \models \phi \leftrightarrow \mathcal{B} \models \phi).$$

Note that $A \cong \mathcal{B} \to (\forall \alpha) \mathcal{A} \sim_{\alpha} \mathcal{B}$, but the reverse implication does not hold.

Motivated by the importance of Σ_{α}^{c} sentences in many examples, we define the following equivalence relation.

Definition

In any class K, satisfying our conventions, we define the equivalence relation

$$\mathcal{A} \sim_{\alpha} \mathcal{B} \leftrightarrow (\forall \phi \in \Sigma_{\alpha}^{c})(\mathcal{A} \models \phi \leftrightarrow \mathcal{B} \models \phi).$$

Note that $A \cong \mathcal{B} \to (\forall \alpha) \mathcal{A} \sim_{\alpha} \mathcal{B}$, but the reverse implication does not hold.

A Lemma

Let AB_{α}^{p} be the class of reduced Abelian p-groups of length α .

Lemma (V.)

For any class (K, E), if $(K, E) \leq_{tc} AB^{\rho}_{\omega}$, then for any $A, B \in K$,

$$AEB \leftrightarrow A \sim_2 B$$
.

Proof: Apply the Pull-back theorem to fact that members of AB^p_{ω} are distinguished by Σ^c_2 sentences.

A Lemma

Let AB_{α}^{p} be the class of reduced Abelian p-groups of length α .

Lemma (V.)

For any class (K, E), if $(K, E) \leq_{tc} AB^p_{\omega}$, then for any $A, B \in K$,

$$\mathcal{A}\mathcal{E}\mathcal{B}\leftrightarrow\mathcal{A}\sim_{2}\mathcal{B}.$$

Proof: Apply the Pull-back theorem to fact that members of AB^p_ω are distinguished by Σ^c_2 sentences.

A Lemma

Let AB_{α}^{p} be the class of reduced Abelian p-groups of length α .

Lemma (V.)

For any class (K, E), if $(K, E) \leq_{tc} AB^p_{\omega}$, then for any $A, B \in K$,

$$\mathcal{A}\mathcal{E}\mathcal{B}\leftrightarrow\mathcal{A}\sim_{2}\mathcal{B}.$$

Proof: Apply the Pull-back theorem to fact that members of AB^p_{ω} are distinguished by Σ^c_2 sentences.

Length ω Case

Theorem (V.)

For any class K, $(K, \sim_2) \leq_{tc} (AB^p_\omega, \sim_2)$.

Proof: We modify proofs of S. Quinn to manually build $\Phi = \phi_e$. First note that we can enumerate the Σ_2^c sentences:

$$\bigvee_{i \in A} (\exists \bar{u}_i) \bigwedge_{j \in B} (\forall \bar{v}_j) \psi_j(\bar{u}_i, \bar{v}_j).$$

Length ω Case

Theorem (V.)

For any class K, $(K, \sim_2) \leq_{tc} (AB_{\omega}^p, \sim_2)$.

Proof: We modify proofs of S. Quinn to manually build $\Phi = \phi_e$. First note that we can enumerate the Σ_2^c sentences:

$$\bigvee_{i\in A}(\exists \bar{u}_i)\bigwedge_{j\in B}(\forall \bar{v}_j)\psi_j(\bar{u}_i,\bar{v}_j).$$

Proof, cont.

• We exploit the Σ_2 guessing strategy to build a copy of

$$\mathbb{Z}_p^{m_1} \oplus \mathbb{Z}_{p^2}^{n_1} \oplus \mathbb{Z}_{p^3}^{m_2} \oplus \mathbb{Z}_{p^4}^{n_2} \oplus \ldots,$$

where all $m_i \in \{0,1\}$ and $n_j = \omega$ for all j.

- So long as we think a given $\phi_n \in \Sigma_2^c$ is true in the input structure, make $m_{n+1} = 1$ in the output group. If we find out we are wrong, reset it to 0 by trashing corresponding summand
- It is easy to check that this is a Turing computable embedding.

Proof, cont.

• We exploit the Σ_2 guessing strategy to build a copy of

$$\mathbb{Z}_p^{m_1} \oplus \mathbb{Z}_{p^2}^{n_1} \oplus \mathbb{Z}_{p^3}^{m_2} \oplus \mathbb{Z}_{p^4}^{n_2} \oplus \ldots,$$

where all $m_i \in \{0, 1\}$ and $n_j = \omega$ for all j.

- So long as we think a given $\phi_n \in \Sigma_2^c$ is true in the input structure, make $m_{n+1} = 1$ in the output group. If we find out we are wrong, reset it to 0 by trashing corresponding summand.
- It is easy to check that this is a Turing computable embedding.

Proof, cont.

• We exploit the Σ_2 guessing strategy to build a copy of

$$\mathbb{Z}_p^{m_1} \oplus \mathbb{Z}_{p^2}^{n_1} \oplus \mathbb{Z}_{p^3}^{m_2} \oplus \mathbb{Z}_{p^4}^{n_2} \oplus \ldots,$$

where all $m_i \in \{0, 1\}$ and $n_i = \omega$ for all j.

- So long as we think a given $\phi_n \in \Sigma_2^c$ is true in the input structure, make $m_{n+1} = 1$ in the output group. If we find out we are wrong, reset it to 0 by trashing corresponding summand.
- It is easy to check that this is a Turing computable embedding.

Theorem (V.)

For any class K, $(K, \sim_n) \leq_{tc} (AB^p_{\omega \cdot m}, \sim_n)$ if and only if $n \leq 2m$.

- Again, Pull-back theorem. For the other direction, we enumerate the relevant sentences, and use a guessing strategy (now using a \emptyset^{2m-2} oracle).
- We use the same guessing strategy to create (an index for) a group of length ω , but now we cannot computably output its diagram.
- We simultaneously lower the complexity and increase the length of the group by repeated application of Khisamiev's theorem, yielding a (index for a) computable group.

Theorem (V.)

For any class K, $(K, \sim_n) \leq_{tc} (AB^p_{\omega \cdot m}, \sim_n)$ if and only if $n \leq 2m$.

- Again, Pull-back theorem. For the other direction, we enumerate the relevant sentences, and use a guessing strategy (now using a \emptyset^{2m-2} oracle).
- We use the same guessing strategy to create (an index for) a group of length ω , but now we cannot computably output its diagram.
- We simultaneously lower the complexity and increase the length of the group by repeated application of Khisamiev's theorem, yielding a (index for a) computable group.

Theorem (V.)

For any class K, $(K, \sim_n) \leq_{tc} (AB^p_{\omega \cdot m}, \sim_n)$ if and only if $n \leq 2m$.

- Again, Pull-back theorem. For the other direction, we enumerate the relevant sentences, and use a guessing strategy (now using a \emptyset^{2m-2} oracle).
- We use the same guessing strategy to create (an index for) a group of length ω , but now we cannot computably output its diagram.
- We simultaneously lower the complexity and increase the length of the group by repeated application of Khisamiev's theorem, yielding a (index for a) computable group.

Theorem (V.)

For any class K, $(K, \sim_n) \leq_{tc} (AB^p_{\omega \cdot m}, \sim_n)$ if and only if $n \leq 2m$.

- Again, Pull-back theorem. For the other direction, we enumerate the relevant sentences, and use a guessing strategy (now using a \emptyset^{2m-2} oracle).
- We use the same guessing strategy to create (an index for) a group of length ω , but now we cannot computably output its diagram.
- We simultaneously lower the complexity and increase the length of the group by repeated application of Khisamiev's theorem, yielding a (index for a) computable group.

Length ω^2

Theorem (V.)

For any class K, $(K, \sim_{\alpha}) \leq_{tc} (AB^{p}_{\omega^{2}}, \sim_{\alpha})$ if and only if $\alpha \leq \omega$.

Theorem (V.)

For any class K, $(K, \sim_{\alpha}) \leq_{tc} (AB^{p}_{\beta}, \sim_{\alpha})$ if and only if $\beta = \omega \cdot \gamma$ and $\alpha < \gamma$.

The proofs requires calculating the back and forth relations for $AB_{...2}^{\rho}$ and larger lengths.

Length ω^2

Theorem (V.)

For any class K, $(K, \sim_{\alpha}) \leq_{tc} (AB^{p}_{\omega^{2}}, \sim_{\alpha})$ if and only if $\alpha \leq \omega$.

Theorem (V.)

For any class K, $(K, \sim_{\alpha}) \leq_{tc} (AB^{p}_{\beta}, \sim_{\alpha})$ if and only if $\beta = \omega \cdot \gamma$ and $\alpha < \gamma$.

The proofs requires calculating the back and forth relations for $AB_{c,2}^{\rho}$ and larger lengths.

Length ω^2

Theorem (V.)

For any class K, $(K, \sim_{\alpha}) \leq_{tc} (AB^{p}_{\omega^{2}}, \sim_{\alpha})$ if and only if $\alpha \leq \omega$.

Theorem (V.)

For any class K, $(K, \sim_{\alpha}) \leq_{tc} (AB^{p}_{\beta}, \sim_{\alpha})$ if and only if $\beta = \omega \cdot \gamma$ and $\alpha < \gamma$.

The proofs requires calculating the back and forth relations for $AB_{0,2}^{\rho}$ and larger lengths.

Bibliography I

- W. Calvert, D. Cummins, J.F. Knight, and S. Miller, "Comparing Classes of Finite Structures" *Algebra and Logic*, 43(2004), pp.365-373, 2004.
- Julia F. Knight, Sara Miller, and M. Vanden Boom, "Turing Computable Embeddings"

 Journal of Symbolic Logic, 72(2007), pp. 901-918, 2007.
- Sara B. Quinn,
 "Algorithmic Complexity of Algebraic Structures"

 Doctoral Dissertation, 2008.