
Turing Computable Embeddings
P-Groups

Characterizing Classes

Embeddings, ∼α, and Abelian P-groups

S. VanDenDriessche

Department of Mathematics
University of Notre Dame

CiE, June 28, 2011

Embeddings, ∼α , and Abelian P-groups



Turing Computable Embeddings
P-Groups

Characterizing Classes

The Isomorphism Problem
Embeddings
The Pull-back Theorem

Classification

In many branches of math, we would like to classify structures
with respect to some notion of equivalence by invariants.

Given classes of structures, can we determine which has a
more difficult classification problem?
The structures usually form a Polish space, K , in which the
equivalence relation, E is definable (in some sense).
H. Friedman and L. Stanley exploited this to create a Borel
reducibility for classes of countable structures.
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Turing Computable Embeddings

Knight, et al. considered only computable languages, and
structures with universes subsets of ω, in order to formulate an
effective analog.We further generalize their definition to allow
classification for equivalence relations other than isomorphism.

Definition
A Turing computable embedding of (K ,E) into (K ′,E ′) is an
operator Φ = φe such that

for each A ∈ K there exists B ∈ K ′ such that
Φ(A) = φ

D(A)
e = χD(B), and

if A,A′ ∈ K , then AEA′ ↔ Φ(A)E ′Φ(A′).

This induces a preordering, denoted by (K ,E) ≤tc (K ′,E ′).
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Some Results

PF <tc FLO <tc FVS <tc VS <tc LO.
For all K , K ≤tc UG ≡tc LO.
VS ≡tc ACF ≡tc ZS
K ≤tc VS if and only if there is a computable sequence
(φn)n∈ω of Σc

2 sentences in the language of K such that
for A ∈ K , and m < n, if A |= φn then A |= φm and
for A,B ∈ K , if A � B then there is some n such that φn is
true in only one of A,B.
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Computable Infinitary Sentences

The computable infinitary formulas are formulas of Lω1ω where
all disjunction/conjunctions are computably enumerable.

Definition
The Σc

0 and Πc
0 formulas are the finitary quantifier-free

formulas (we suppose they are always in normal form).
For a computable ordinal α > 0,

a Σc
α formula φ(x̄) is a c.e. disjunction of formulas of the

form (∃ū)ψ(x̄ , ū), where each ψ ∈ Πc
β for β < α.

a Πc
α formula φ(x̄) is a c.e. conjunction of formulas of the

form (∀ū)ψ(x̄ , ū), where each ψ ∈ Σc
β for β < α.

Note that neg(φ) is defined in the obvious way.

Embeddings, ∼α , and Abelian P-groups



Turing Computable Embeddings
P-Groups

Characterizing Classes

The Isomorphism Problem
Embeddings
The Pull-back Theorem

Computable Infinitary Sentences

The computable infinitary formulas are formulas of Lω1ω where
all disjunction/conjunctions are computably enumerable.

Definition
The Σc

0 and Πc
0 formulas are the finitary quantifier-free

formulas (we suppose they are always in normal form).
For a computable ordinal α > 0,

a Σc
α formula φ(x̄) is a c.e. disjunction of formulas of the
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The Pull-back Theorem

A powerful tool for showing non-embeddability is:

Theorem (Pull-back Theorem (Knight, et al.))

If (K ,E) ≤tc (K ′,E ′) via Φ, then for any computable infinitary
sentence φ in the language of K ′, we can (effectively) find a
computable infinitary sentence φ∗ in the language of K such
that

for all A ∈ K , Φ(A) |= φ if and only if A |= φ∗

φ and φ∗ have the same complexity.

Note that this also gives necessary conditions for embeddings
to exists (i.e. VS result).
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P-groups

Fix any prime, p. Recall that an Abelian p-group is an Abelian
group where each element has order a power of p. Let G be a
countable Abelian p-group.

Define inductively: G0 = G, Gβ+1 = pGβ, and Gλ = ∩γ<λGγ .
G is divisible if every x ∈ G is divisible by pn for all n.
For each G, there is a length, λ such that Gλ = Gλ+1.
If Gλ = {0}, we call G reduced.
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Invariants

Let Pβ(G) := {x ∈ Gβ : px = 0}.
Note that Pβ(G)/Pβ+1(G) is a Zp-vector space, and let
uβ(G) be its dimension.

Theorem (Ulm)
Two countable, reduced Abelian p-groups are isomorphic if and
only if they have the same Ulm invariants.
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Khisamiev’s Theorem

The following special case of a theorem of N. Khisamiev will
prove useful.

Theorem (Khisamiev)

If G is a X ′′-computable reduced Abelian p-group, then there is
an X-computable reduced Abelian p-group H, such that

1 Hω
∼= G

2 Un(H) =∞ for all n ∈ ω
3 Given an index for G, we can compute an index for H.
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(K ,∼2) ≤tc (ABp
ω,∼=)

Higher Lengths

∼α

Motivated by the importance of Σc
α sentences in many

examples, we define the following equivalence relation.

Definition
In any class K , satisfying our conventions, we define the
equivalence relation

A ∼α B ↔ (∀φ ∈ Σc
α)(A |= φ↔ B |= φ).

Note that A ∼= B → (∀α)A ∼α B, but the reverse implication
does not hold.
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Higher Lengths

A Lemma

Let ABp
α be the class of reduced Abelian p-groups of length α.

Lemma (V.)

For any class (K ,E), if (K ,E) ≤tc ABp
ω, then for any A,B ∈ K ,

AEB ↔ A ∼2 B.

Proof: Apply the Pull-back theorem to fact that members of
ABp

ω are distinguished by Σc
2 sentences.
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(K ,∼2) ≤tc (ABp
ω,∼=)

Higher Lengths

Length ω Case

Theorem (V.)

For any class K , (K ,∼2) ≤tc (ABp
ω,∼2).

Proof: We modify proofs of S. Quinn to manually build Φ = φe.
First note that we can enumerate the Σc

2 sentences:∨
i∈A

(∃ūi)
∧
j∈B

(∀v̄j)ψj(ūi , v̄j).
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Proof, cont.

We exploit the Σ2 guessing strategy to build a copy of

Zm1
p ⊕ Z

n1
p2 ⊕ Z

m2
p3 ⊕ Z

n2
p4 ⊕ . . . ,

where all mi ∈ {0,1} and nj = ω for all j .
So long as we think a given φn ∈ Σc

2 is true in the input
structure, make mn+1 = 1 in the output group. If we find
out we are wrong, reset it to 0 by trashing corresponding
summand.
It is easy to check that this is a Turing computable
embedding.
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(K ,∼2) ≤tc (ABp
ω,∼=)

Higher Lengths

Length ω ·m Case

Theorem (V.)

For any class K , (K ,∼n) ≤tc (ABp
ω·m,∼n) if and only if n ≤ 2m.

Proof:
Again, Pull-back theorem. For the other direction, we
enumerate the relevant sentences, and use a guessing
strategy (now using a ∅2m−2 oracle).
We use the same guessing strategy to create (an index for)
a group of length ω, but now we cannot computably output
its diagram.
We simultaneously lower the complexity and increase the
length of the group by repeated application of Khisamiev’s
theorem, yielding a (index for a) computable group.
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For any class K , (K ,∼n) ≤tc (ABp
ω·m,∼n) if and only if n ≤ 2m.

Proof:
Again, Pull-back theorem. For the other direction, we
enumerate the relevant sentences, and use a guessing
strategy (now using a ∅2m−2 oracle).
We use the same guessing strategy to create (an index for)
a group of length ω, but now we cannot computably output
its diagram.
We simultaneously lower the complexity and increase the
length of the group by repeated application of Khisamiev’s
theorem, yielding a (index for a) computable group.
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Characterizing Classes

(K ,∼2) ≤tc (ABp
ω,∼=)

Higher Lengths

Length ω2

Theorem (V.)

For any class K , (K ,∼α) ≤tc (ABp
ω2 ,∼α) if and only if α ≤ ω.

Theorem (V.)

For any class K , (K ,∼α) ≤tc (ABp
β,∼α) if and only if β = ω · γ

and α < γ.

The proofs requires calculating the back and forth relations for
ABp

ω2 and larger lengths.
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and α < γ.

The proofs requires calculating the back and forth relations for
ABp
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