On a Relative Computability Notion for Real Functions

Dimiter Skordev¹ Ivan Georgiev²

¹University of Sofia, Bulgaria

²Burgas Prof. Assen Zlatarov University, Bulgaria

Computability in Europe 2011

29 June 2011

・ロト・日本・モート モー うへぐ

- For any class *F* of total functions in N, we define what it means for a real function to be conditionally *F*-computable. This notion extends the notion of uniform *F*-computability of real functions introduced in the paper [SkWeGe 10].
- If F consists of recursive functions then the conditionally F-computable real functions are computable in the sense of [Gr 55] extended by allowing the used computable functionals to be partial and by considering real functions of any number of variables.
- Under certain weak assumptions about \mathcal{F} , we show that:
 - conditional \mathcal{F} -computability is preserved by substitution,
 - ► all conditionally *F*-computable real functions are locally uniformly *F*-computable,
 - the conditionally \mathcal{F} -computable real functions with compact domains are uniformly \mathcal{F} -computable.
- All elementary functions of calculus are conditionally *M*²-computable.

- For any class *F* of total functions in N, we define what it means for a real function to be conditionally *F*-computable. This notion extends the notion of uniform *F*-computability of real functions introduced in the paper [SkWeGe10].
- If *F* consists of recursive functions then the conditionally *F*-computable real functions are computable in the sense of [Gr 55] extended by allowing the used computable functionals to be partial and by considering real functions of any number of variables.
- Under certain weak assumptions about \mathcal{F} , we show that:
 - conditional \mathcal{F} -computability is preserved by substitution,
 - ► all conditionally *F*-computable real functions are locally uniformly *F*-computable,
 - the conditionally *F*-computable real functions with compact domains are uniformly *F*-computable.
- ► All elementary functions of calculus are conditionally M²-computable.

- For any class *F* of total functions in N, we define what it means for a real function to be conditionally *F*-computable. This notion extends the notion of uniform *F*-computability of real functions introduced in the paper [SkWeGe10].
- If *F* consists of recursive functions then the conditionally *F*-computable real functions are computable in the sense of [Gr 55] extended by allowing the used computable functionals to be partial and by considering real functions of any number of variables.
- \blacktriangleright Under certain weak assumptions about $\mathcal F$, we show that:
 - conditional \mathcal{F} -computability is preserved by substitution,
 - ► all conditionally *F*-computable real functions are locally uniformly *F*-computable,
 - the conditionally \mathcal{F} -computable real functions with compact domains are uniformly \mathcal{F} -computable.
- ► All elementary functions of calculus are conditionally M²-computable.

- For any class *F* of total functions in N, we define what it means for a real function to be conditionally *F*-computable. This notion extends the notion of uniform *F*-computability of real functions introduced in the paper [SkWeGe10].
- If *F* consists of recursive functions then the conditionally *F*-computable real functions are computable in the sense of [Gr 55] extended by allowing the used computable functionals to be partial and by considering real functions of any number of variables.
- \blacktriangleright Under certain weak assumptions about $\mathcal F$, we show that:
 - conditional \mathcal{F} -computability is preserved by substitution,
 - ▶ all conditionally *F*-computable real functions are locally uniformly *F*-computable,
 - the conditionally \mathcal{F} -computable real functions with compact domains are uniformly \mathcal{F} -computable.
- All elementary functions of calculus are conditionally
 M²-computable.

- For any class *F* of total functions in N, we define what it means for a real function to be conditionally *F*-computable. This notion extends the notion of uniform *F*-computability of real functions introduced in the paper [SkWeGe10].
- If *F* consists of recursive functions then the conditionally *F*-computable real functions are computable in the sense of [Gr 55] extended by allowing the used computable functionals to be partial and by considering real functions of any number of variables.
- \blacktriangleright Under certain weak assumptions about $\mathcal F$, we show that:
 - conditional \mathcal{F} -computability is preserved by substitution,
 - ▶ all conditionally *F*-computable real functions are locally uniformly *F*-computable,
 - the conditionally *F*-computable real functions with compact domains are uniformly *F*-computable.

All elementary functions of calculus are conditionally
 M²-computable.

- For any class *F* of total functions in N, we define what it means for a real function to be conditionally *F*-computable. This notion extends the notion of uniform *F*-computability of real functions introduced in the paper [SkWeGe10].
- If *F* consists of recursive functions then the conditionally *F*-computable real functions are computable in the sense of [Gr 55] extended by allowing the used computable functionals to be partial and by considering real functions of any number of variables.
- \blacktriangleright Under certain weak assumptions about $\mathcal F$, we show that:
 - conditional \mathcal{F} -computability is preserved by substitution,
 - ▶ all conditionally *F*-computable real functions are locally uniformly *F*-computable,
 - the conditionally \mathcal{F} -computable real functions with compact domains are uniformly \mathcal{F} -computable.
- All elementary functions of calculus are conditionally *M*²-computable.

Computability of Real Functions in the Extended Sense of [Gr 55]

As in [SkWeGe10], a triple (f, g, h) of total one-argument functions in \mathbb{N} will be called to name a real number ξ if

$$\left|\frac{f(t)-g(t)}{h(t)+1}-\xi\right| < \frac{1}{t+1}$$

for all $t \in \mathbb{N}$ ($h = \lambda t.t$ is actually used in [Gr55]).

Let $N \in \mathbb{N}$ and $\theta: D \to \mathbb{R}$, where $D \subseteq \mathbb{R}^N$. The function θ is computable in the extended sense of [Gr 55] iff there exist recursive operators F, G, H acting on 3N-tuples of one-argument functions in \mathbb{N} and such that, whenever $(\xi_1, \ldots, \xi_N) \in D$ and $(f_1, g_1, h_1), \ldots,$ (f_N, g_N, h_N) are triples naming ξ_1, \ldots, ξ_N , respectively, the functions $F(\overline{f}, \overline{g}, \overline{h}), G(\overline{f}, \overline{g}, \overline{h}), H(\overline{f}, \overline{g}, \overline{h})$, where $\overline{f} = f_1, \ldots, f_N$, $\overline{g} = g_1, \ldots, g_N$, and $\overline{h} = h_1, \ldots, h_N$, are total, and the triple of them names $\theta(\xi_1, \ldots, \xi_N)$. Computability of Real Functions in the Extended Sense of [Gr 55]

As in [SkWeGe10], a triple (f, g, h) of total one-argument functions in \mathbb{N} will be called to name a real number ξ if

$$\left|\frac{f(t)-g(t)}{h(t)+1}-\xi\right| < \frac{1}{t+1}$$

for all $t \in \mathbb{N}$ ($h = \lambda t.t$ is actually used in [Gr55]).

Let $N \in \mathbb{N}$ and $\theta: D \to \mathbb{R}$, where $D \subseteq \mathbb{R}^N$. The function θ is computable in the extended sense of [Gr 55] iff there exist recursive operators F, G, H acting on 3N-tuples of one-argument functions in \mathbb{N} and such that, whenever $(\xi_1, \ldots, \xi_N) \in D$ and $(f_1, g_1, h_1), \ldots,$ (f_N, g_N, h_N) are triples naming ξ_1, \ldots, ξ_N , respectively, the functions $F(\overline{f}, \overline{g}, \overline{h}), G(\overline{f}, \overline{g}, \overline{h}), H(\overline{f}, \overline{g}, \overline{h})$, where $\overline{f} = f_1, \ldots, f_N$, $\overline{g} = g_1, \ldots, g_N$, and $\overline{h} = h_1, \ldots, h_N$, are total, and the triple of them names $\theta(\xi_1, \ldots, \xi_N)$. Subrecursive Computability of Functions of Reals as a Certain Kind of Relative Computability

As far as we know, the first paper in this direction is [TeZi 10] (especially if its preliminary version at arxiv.org is taken into consideration). Further ones are [SkWeGe 10] and [Sk xx], where the uniform \mathcal{F} -computability is introduced and studied.

The definition of uniform \mathcal{F} -computability is similar to the characterization of computability in the extended sense of [Gr 55] on the previous slide, but uses so-called \mathcal{F} -substitutional mappings instead of recursive operators.

Subrecursive Computability of Functions of Reals as a Certain Kind of Relative Computability

As far as we know, the first paper in this direction is [TeZi 10] (especially if its preliminary version at arxiv.org is taken into consideration). Further ones are [SkWeGe 10] and [Sk xx], where the uniform \mathcal{F} -computability is introduced and studied.

The definition of uniform \mathcal{F} -computability is similar to the characterization of computability in the extended sense of [Gr 55] on the previous slide, but uses so-called \mathcal{F} -substitutional mappings instead of recursive operators.

\mathcal{F} -Substitutional Mappings

For any $m \in \mathbb{N}$, we will denote by \mathbb{T}_m the set of all *m*-argument total functions in \mathbb{N} . Let $\mathcal{F} \subseteq \bigcup_{m \in \mathbb{N}} \mathbb{T}_m$. For any $k, m \in \mathbb{N}$, certain mappings of \mathbb{T}_1^k into \mathbb{T}_m will be called \mathcal{F} -substitutional, as follows:

- 1. For any *m*-argument projection function *h* in \mathbb{N} the mapping *F* defined by $F(f_1, \ldots, f_k) = h$ is \mathcal{F} -substitutional.
- 2. For any $i \in \{1, ..., k\}$, if F_0 is a \mathcal{F} -substitutional mapping of \mathbb{T}_1^k into \mathbb{T}_m then so is the mapping F defined by

 $F(f_1,...,f_k)(n_1,...,n_m) = f_i(F_0(f_1,...,f_k)(n_1,...,n_m)).$

3. For any $r \in \mathbb{N}$ and $f \in \mathcal{F} \cap \mathbb{T}_r$, if F_1, \ldots, F_r are \mathcal{F} -substitutional mappings of \mathbb{T}_1^k into \mathbb{T}_m then so is the mapping F defined by

$$F(f_1,...,f_k)(n_1,...,n_m) = f(F_1(f_1,...,f_k)(n_1,...,n_m),...,F_r(f_1,...,f_k)(n_1,...,n_m)).$$

\mathcal{F} -Substitutional Mappings

For any $m \in \mathbb{N}$, we will denote by \mathbb{T}_m the set of all *m*-argument total functions in \mathbb{N} . Let $\mathcal{F} \subseteq \bigcup_{m \in \mathbb{N}} \mathbb{T}_m$. For any $k, m \in \mathbb{N}$, certain mappings of \mathbb{T}_1^k into \mathbb{T}_m will be called \mathcal{F} -substitutional, as follows:

- 1. For any *m*-argument projection function *h* in \mathbb{N} the mapping *F* defined by $F(f_1, \ldots, f_k) = h$ is \mathcal{F} -substitutional.
- 2. For any $i \in \{1, ..., k\}$, if F_0 is a \mathcal{F} -substitutional mapping of \mathbb{T}_1^k into \mathbb{T}_m then so is the mapping F defined by

 $F(f_1,...,f_k)(n_1,...,n_m) = f_i(F_0(f_1,...,f_k)(n_1,...,n_m)).$

3. For any $r \in \mathbb{N}$ and $f \in \mathcal{F} \cap \mathbb{T}_r$, if F_1, \ldots, F_r are \mathcal{F} -substitutional mappings of \mathbb{T}_1^k into \mathbb{T}_m then so is the mapping F defined by

$$F(f_1,...,f_k)(n_1,...,n_m) = f(F_1(f_1,...,f_k)(n_1,...,n_m),...,F_r(f_1,...,f_k)(n_1,...,n_m)).$$

\mathcal{F} -Substitutional Mappings

For any $m \in \mathbb{N}$, we will denote by \mathbb{T}_m the set of all *m*-argument total functions in \mathbb{N} . Let $\mathcal{F} \subseteq \bigcup_{m \in \mathbb{N}} \mathbb{T}_m$. For any $k, m \in \mathbb{N}$, certain mappings of \mathbb{T}_1^k into \mathbb{T}_m will be called \mathcal{F} -substitutional, as follows:

- 1. For any *m*-argument projection function h in \mathbb{N} the mapping F defined by $F(f_1, \ldots, f_k) = h$ is \mathcal{F} -substitutional.
- 2. For any $i \in \{1, ..., k\}$, if F_0 is a \mathcal{F} -substitutional mapping of \mathbb{T}_1^k into \mathbb{T}_m then so is the mapping F defined by

$$F(f_1,...,f_k)(n_1,...,n_m) = f_i(F_0(f_1,...,f_k)(n_1,...,n_m)).$$

3. For any $r \in \mathbb{N}$ and $f \in \mathcal{F} \cap \mathbb{T}_r$, if F_1, \ldots, F_r are \mathcal{F} -substitutional mappings of \mathbb{T}_1^k into \mathbb{T}_m then so is the mapping F defined by

$$F(f_1,...,f_k)(n_1,...,n_m) = f(F_1(f_1,...,f_k)(n_1,...,n_m),...,F_r(f_1,...,f_k)(n_1,...,n_m)).$$

*F***-Substitutional Mappings**

For any $m \in \mathbb{N}$, we will denote by \mathbb{T}_m the set of all *m*-argument total functions in \mathbb{N} . Let $\mathcal{F} \subseteq \bigcup_{m \in \mathbb{N}} \mathbb{T}_m$. For any $k, m \in \mathbb{N}$, certain mappings of \mathbb{T}_1^k into \mathbb{T}_m will be called \mathcal{F} -substitutional, as follows:

- 1. For any *m*-argument projection function *h* in \mathbb{N} the mapping *F* defined by $F(f_1, \ldots, f_k) = h$ is \mathcal{F} -substitutional.
- 2. For any $i \in \{1, ..., k\}$, if F_0 is a \mathcal{F} -substitutional mapping of \mathbb{T}_1^k into \mathbb{T}_m then so is the mapping F defined by

$$F(f_1,\ldots,f_k)(n_1,\ldots,n_m)=f_i(F_0(f_1,\ldots,f_k)(n_1,\ldots,n_m)).$$

3. For any $r \in \mathbb{N}$ and $f \in \mathcal{F} \cap \mathbb{T}_r$, if F_1, \ldots, F_r are \mathcal{F} -substitutional mappings of \mathbb{T}_1^k into \mathbb{T}_m then so is the mapping F defined by

$$F(f_1,...,f_k)(n_1,...,n_m) = f(F_1(f_1,...,f_k)(n_1,...,n_m),...,F_r(f_1,...,f_k)(n_1,...,n_m)).$$

Two Statements about \mathcal{F} -Substitutional Mappings

Proposition

Let $F : \mathbb{T}_1^k \to \mathbb{T}_m$ and $G_1, \ldots, G_m : \mathbb{T}_1^k \to \mathbb{T}_l$ be \mathcal{F} -substitutional. Then so is the mapping $H : \mathbb{T}_1^k \to \mathbb{T}_l$ defined by

$$H(\overline{f})(\overline{n}) = F(\overline{f})(G_1(\overline{f})(\overline{n}),\ldots,G_m(\overline{f})(\overline{n})),$$

where
$$\overline{f} = f_1, \ldots, f_k$$
, and $\overline{n} = n_1, \ldots, n_l$.

Proposition

Let $F : \mathbb{T}_{1}^{k} \to \mathbb{T}_{m}$ and $G_{1}, \ldots, G_{k} : \mathbb{T}_{1}^{\prime} \to \mathbb{T}_{p+1}$ be \mathcal{F} -substitutional. Then so is the mapping $H : \mathbb{T}_{1}^{\prime} \to \mathbb{T}_{p+m}$ defined by the equality

 $H(\overline{g})(\overline{u},\overline{n}) = F(\lambda t.G_1(\overline{g})(\overline{u},t),\ldots,\lambda t.G_k(\overline{g})(\overline{u},t))(\overline{n}),$

where $\overline{g} = g_1, \ldots, g_l$, $\overline{u} = u_1, \ldots, u_p$, and $\overline{n} = n_1, \ldots, n_m$.

・ロト・日本・モート モー うへぐ

Two Statements about \mathcal{F} -Substitutional Mappings

Proposition

Let $F : \mathbb{T}_1^k \to \mathbb{T}_m$ and $G_1, \ldots, G_m : \mathbb{T}_1^k \to \mathbb{T}_l$ be \mathcal{F} -substitutional. Then so is the mapping $H : \mathbb{T}_1^k \to \mathbb{T}_l$ defined by

$$H(\overline{f})(\overline{n}) = F(\overline{f})(G_1(\overline{f})(\overline{n}),\ldots,G_m(\overline{f})(\overline{n})),$$

where
$$\overline{f} = f_1, \ldots, f_k$$
, and $\overline{n} = n_1, \ldots, n_l$.

Proposition

Let $F : \mathbb{T}_1^k \to \mathbb{T}_m$ and $G_1, \ldots, G_k : \mathbb{T}_1^l \to \mathbb{T}_{p+1}$ be \mathcal{F} -substitutional. Then so is the mapping $H : \mathbb{T}_1^l \to \mathbb{T}_{p+m}$ defined by the equality

$$H(\overline{g})(\overline{u},\overline{n}) = F(\lambda t.G_1(\overline{g})(\overline{u},t),\ldots,\lambda t.G_k(\overline{g})(\overline{u},t))(\overline{n}),$$

where $\overline{g} = g_1, \ldots, g_l$, $\overline{u} = u_1, \ldots, u_p$, and $\overline{n} = n_1, \ldots, n_m$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

Conditional *F*-Computability of Real Functions

Let $N \in \mathbb{N}$ and $\theta : D \to \mathbb{R}$, where $D \subseteq \mathbb{R}^N$. The function θ will be called *conditionally* \mathcal{F} -computable if there exist \mathcal{F} -substitutional mappings $E:\mathbb{T}_1^{3N} \to \mathbb{T}_1$ and $F, G, H:\mathbb{T}_1^{3N} \to \mathbb{T}_2$ such that, whenever $(\xi_1, \ldots, \xi_N) \in D$ and $(f_1, g_1, h_1), \ldots, (f_N, g_N, h_N)$ are triples from \mathbb{T}_1^3 naming ξ_1, \ldots, ξ_N , respectively, the following holds, where $\overline{f} = f_1, \ldots, f_N$, $\overline{g} = g_1, \ldots, g_N$, and $\overline{h} = h_1, \ldots, h_N$:

- 1. There exists a natural number s such that $E(\overline{f}, \overline{g}, \overline{h})(s) = 0$.
- 2. For any natural number s with $E(\overline{f}, \overline{g}, \overline{h})(s) = 0$, the number $\theta(\xi_1, \dots, \xi_N)$ is named by the triple

 $(\lambda t.F(\overline{f},\overline{g},\overline{h})(s,t),\lambda t.G(\overline{f},\overline{g},\overline{h})(s,t),\lambda t.H(\overline{f},\overline{g},\overline{h})(s,t)).$

Conditional *F*-Computability of Real Functions

Let $N \in \mathbb{N}$ and $\theta : D \to \mathbb{R}$, where $D \subseteq \mathbb{R}^N$. The function θ will be called *conditionally* \mathcal{F} -computable if there exist \mathcal{F} -substitutional mappings $E:\mathbb{T}_1^{3N} \to \mathbb{T}_1$ and $F, G, H:\mathbb{T}_1^{3N} \to \mathbb{T}_2$ such that, whenever $(\xi_1, \ldots, \xi_N) \in D$ and $(f_1, g_1, h_1), \ldots, (f_N, g_N, h_N)$ are triples from \mathbb{T}_1^3 naming ξ_1, \ldots, ξ_N , respectively, the following holds, where $\overline{f} = f_1, \ldots, f_N$, $\overline{g} = g_1, \ldots, g_N$, and $\overline{h} = h_1, \ldots, h_N$:

- 1. There exists a natural number s such that $E(\overline{f}, \overline{g}, \overline{h})(s) = 0$.
- 2. For any natural number s with $E(\overline{f}, \overline{g}, \overline{h})(s) = 0$, the number $\theta(\xi_1, \ldots, \xi_N)$ is named by the triple

$$(\lambda t.F(\overline{f},\overline{g},\overline{h})(s,t),\lambda t.G(\overline{f},\overline{g},\overline{h})(s,t),\lambda t.H(\overline{f},\overline{g},\overline{h})(s,t)).$$

The Uniformly \mathcal{F} -Computable Real Functions are Conditionally \mathcal{F} -Computable

Let $N \in \mathbb{N}$, and let the function $\theta : D \to \mathbb{R}$, where $D \subseteq \mathbb{R}^N$, be uniformly \mathcal{F} -computable. Then there exist \mathcal{F} -substitutional mappings $F^{\circ}, G^{\circ}, H^{\circ}:\mathbb{T}_1^{3N} \to \mathbb{T}_1$ such that, whenever $(\xi_1, \ldots, \xi_N) \in D$ and $(f_1, g_1, h_1), \ldots, (f_N, g_N, h_N)$ are triples from \mathbb{T}_1^3 naming ξ_1, \ldots, ξ_N , respectively, the number $\theta(\xi_1, \ldots, \xi_N)$ is named by the triple $(F^{\circ}(\overline{f}, \overline{g}, \overline{h}), G^{\circ}(\overline{f}, \overline{g}, \overline{h}), H^{\circ}(\overline{f}, \overline{g}, \overline{h}))$, where $\overline{f} = f_1, \ldots, f_N$, $\overline{g} = g_1, \ldots, g_N$, and $\overline{h} = h_1, \ldots, h_N$.

To show the conditional \mathcal{F} -computability of θ , we set

$$E(\overline{f}, \overline{g}, \overline{h})(s) = s,$$

$$F(\overline{f}, \overline{g}, \overline{h})(s, t) = F^{\circ}(\overline{f}, \overline{g}, \overline{h})(t),$$

$$G(\overline{f}, \overline{g}, \overline{h})(s, t) = G^{\circ}(\overline{f}, \overline{g}, \overline{h})(t),$$

$$H(\overline{f}, \overline{g}, \overline{h})(s, t) = H^{\circ}(\overline{f}, \overline{g}, \overline{h})(t).$$

The Uniformly \mathcal{F} -Computable Real Functions are Conditionally \mathcal{F} -Computable

Let $N \in \mathbb{N}$, and let the function $\theta : D \to \mathbb{R}$, where $D \subseteq \mathbb{R}^N$, be uniformly \mathcal{F} -computable. Then there exist \mathcal{F} -substitutional mappings $F^{\circ}, G^{\circ}, H^{\circ}:\mathbb{T}_1^{3N} \to \mathbb{T}_1$ such that, whenever $(\xi_1, \ldots, \xi_N) \in D$ and $(f_1, g_1, h_1), \ldots, (f_N, g_N, h_N)$ are triples from \mathbb{T}_1^3 naming ξ_1, \ldots, ξ_N , respectively, the number $\theta(\xi_1, \ldots, \xi_N)$ is named by the triple $(F^{\circ}(\overline{f}, \overline{g}, \overline{h}), G^{\circ}(\overline{f}, \overline{g}, \overline{h}), H^{\circ}(\overline{f}, \overline{g}, \overline{h}))$, where $\overline{f} = f_1, \ldots, f_N$, $\overline{g} = g_1, \ldots, g_N$, and $\overline{h} = h_1, \ldots, h_N$.

To show the conditional \mathcal{F} -computability of θ , we set

$$E(\overline{f}, \overline{g}, \overline{h})(s) = s,$$

$$F(\overline{f}, \overline{g}, \overline{h})(s, t) = F^{\circ}(\overline{f}, \overline{g}, \overline{h})(t),$$

$$G(\overline{f}, \overline{g}, \overline{h})(s, t) = G^{\circ}(\overline{f}, \overline{g}, \overline{h})(t),$$

$$H(\overline{f}, \overline{g}, \overline{h})(s, t) = H^{\circ}(\overline{f}, \overline{g}, \overline{h})(t).$$

The Function $\lambda \xi.1/\xi$ is Conditionally \mathcal{M}^2 -Computable

To prove this, we may set

$$\begin{split} &E(f,g,h)(s) = (2h(s)+3) \div (s+1)|f(s) - g(s)|, \\ &F(f,g,h)(s,t) = (h(u(s,t))+1) \operatorname{sg}(f(u(s,t)) \div g(u(s,t))), \\ &G(f,g,h)(s,t) = (h(u(s,t))+1) \operatorname{sg}(g(u(s,t)) \div f(u(s,t))), \\ &H(f,g,h)(s,t) = |f(u(s,t)) - g(u(s,t))| \div 1, \end{split}$$

where $u(s, t) = s + (s+1)^2(t+1)$.

The Function $\lambda \xi . \exp(\xi)$ is Conditionally \mathcal{M}^2 -Computable

It is proved in [SkWeGe 10] that min(exp(ξ), η) is a uniformly \mathcal{M}^2 -computable function of ξ and η . Hence there exist \mathcal{M}^2 -substitutional mappings $F^\circ, G^\circ, H^\circ: \mathbb{T}_1^6 \to \mathbb{T}_1$ such that, whenever (f_1, g_1, h_1) and (f_2, g_2, h_2) are triples from \mathbb{T}_1^3 naming the real numbers ξ and η , respectively, then min(exp(ξ), η) is named by the triple

 $(F^{\circ}(f_1, f_2, g_1, g_2, h_1, h_2), G^{\circ}(f_1, f_2, g_1, g_2, h_1, h_2), H^{\circ}(f_1, f_2, g_1, g_2, h_1, h_2)).$

To see the conditional \mathcal{M}^2 -computability of $\lambda \xi. \exp(\xi)$, we may set

$$\begin{split} & E(f,g,h)(s) = (f(0) + h(0) + 1) \div ((s+1)_1(h(0) + 1) + g(0)), \\ & F(f,g,h)(s,t) = F^{\circ}(f,\lambda x.s+1,g,\lambda x.0,h,\lambda x.0)(t), \\ & G(f,g,h)(s,t) = G^{\circ}(f,\lambda x.s+1,g,\lambda x.0,h,\lambda x.0)(t), \\ & H(f,g,h)(s,t) = H^{\circ}(f,\lambda x.s+1,g,\lambda x.0,h,\lambda x.0)(t), \end{split}$$

where $(s+1)_1$ is the exponent of the prime number 3 in s+1.

The Function $\lambda \xi . \exp(\xi)$ is Conditionally \mathcal{M}^2 -Computable

It is proved in [SkWeGe 10] that min(exp(ξ), η) is a uniformly \mathcal{M}^2 -computable function of ξ and η . Hence there exist \mathcal{M}^2 -substitutional mappings $F^\circ, G^\circ, H^\circ: \mathbb{T}_1^6 \to \mathbb{T}_1$ such that, whenever (f_1, g_1, h_1) and (f_2, g_2, h_2) are triples from \mathbb{T}_1^3 naming the real numbers ξ and η , respectively, then min(exp(ξ), η) is named by the triple

$$(F^{\circ}(f_1, f_2, g_1, g_2, h_1, h_2), G^{\circ}(f_1, f_2, g_1, g_2, h_1, h_2), H^{\circ}(f_1, f_2, g_1, g_2, h_1, h_2))$$

To see the conditional \mathcal{M}^2 -computability of $\lambda\xi.\exp(\xi)$, we may set

$$\begin{split} &E(f,g,h)(s) = (f(0) + h(0) + 1) \div ((s+1)_1(h(0) + 1) + g(0)), \\ &F(f,g,h)(s,t) = F^\circ(f,\lambda x.s+1,g,\lambda x.0,h,\lambda x.0)(t), \\ &G(f,g,h)(s,t) = G^\circ(f,\lambda x.s+1,g,\lambda x.0,h,\lambda x.0)(t), \\ &H(f,g,h)(s,t) = H^\circ(f,\lambda x.s+1,g,\lambda x.0,h,\lambda x.0)(t), \end{split}$$

where $(s+1)_1$ is the exponent of the prime number 3 in s+1.

The Partial Recursive Functions in \mathbb{N} Regarded as Functions in \mathbb{R} are Conditionally \mathcal{M}^2 -Computable Let θ be an *N*-argument partial recursive function. Then θ has a representation of the form

$$\theta(x_1,\ldots,x_N) = U(\mu y [T(x_1,\ldots,x_N,y)=0]),$$

where $T, U \in \mathcal{M}^2$. To show the conditional \mathcal{M}^2 -computability of θ , we may set

$$E(\overline{f}, \overline{g}, \overline{h})(s) = T(x_1, \dots, x_N, s) + \max_{y < s} \overline{sg} T(x_1, \dots, x_N, y),$$

$$F(\overline{f}, \overline{g}, \overline{h})(s, t) = U(s),$$

$$G(\overline{f}, \overline{g}, \overline{h})(s, t) = 0,$$

$$H(\overline{f}, \overline{g}, \overline{h})(s, t) = 0,$$

where $\overline{f} = f_1, \ldots, f_N$, $\overline{g} = g_1, \ldots, g_N$, $\overline{h} = h_1, \ldots, h_N$, and

$$x_{i} = \left\lfloor \frac{f_{i}(1) \div g_{i}(1)}{h_{i}(1) + 1} + \frac{1}{2} \right\rfloor, \quad i = 1, \dots, N.$$

The Partial Recursive Functions in \mathbb{N} Regarded as Functions in \mathbb{R} are Conditionally \mathcal{M}^2 –Computable

Let θ be an *N*-argument partial recursive function. Then θ has a representation of the form

$$\theta(x_1,\ldots,x_N) = U(\mu y[T(x_1,\ldots,x_N,y)=0]),$$

where $T, U \in \mathcal{M}^2$. To show the conditional \mathcal{M}^2 -computability of θ , we may set

$$E(\overline{f}, \overline{g}, \overline{h})(s) = T(x_1, \dots, x_N, s) + \max_{y < s} \overline{sg} T(x_1, \dots, x_N, y),$$

$$F(\overline{f}, \overline{g}, \overline{h})(s, t) = U(s),$$

$$G(\overline{f}, \overline{g}, \overline{h})(s, t) = 0,$$

$$H(\overline{f}, \overline{g}, \overline{h})(s, t) = 0,$$
where $\overline{f} = f_1, \dots, f_N$, $\overline{g} = g_1, \dots, g_N$, $\overline{h} = h_1, \dots, h_N$, and

$$x_{i} = \left\lfloor \frac{f_{i}(1) \div g_{i}(1)}{h_{i}(1) + 1} + \frac{1}{2} \right\rfloor, \quad i = 1, \dots, N.$$

Substitution in Conditionally \mathcal{F} -Computable Real Functions

Theorem

Let the class \mathcal{F} contain the addition function and one-argument functions L and R such that $\{(L(s), R(s)) | s \in \mathbb{N}\} = \mathbb{N}^2$. Then the substitution operation on real functions preserves conditional \mathcal{F} -computability.

As an application, we will show that the function $\theta(\xi) = \ln \xi$ is conditionally \mathcal{M}^2 -computable. Let us consider the function θ° having domain $\{(\xi_1, \xi_2) \in \mathbb{R}^2 | \xi_1 > 0, \xi_1 \xi_2 \ge 1\}$ and defined by $\theta^\circ(\xi_1, \xi_2) = \ln \xi_1$. This function is uniformly \mathcal{M}^2 -computable by [SkWeGe10], hence it is conditionally \mathcal{M}^2 -computable. On the other hand, $\theta(\xi) = \theta^\circ(\xi, 1/\xi)$ for all $\xi \in \text{dom}(\theta)$.

Since the arctan, arcsin, arccos, sine and cosine functions are shown in [SkWeGe10] to be uniformly \mathcal{M}^2 -computable, and so are the sum, difference and product functions, as well as the functions $\sqrt[n]{\xi}$, $n = 2, 3, \ldots$, we may conclude that all elementary functions of calculus are conditionally \mathcal{M}^2 -computable.

Substitution in Conditionally \mathcal{F} -Computable Real Functions

Theorem

Let the class \mathcal{F} contain the addition function and one-argument functions L and R such that $\{(L(s), R(s)) | s \in \mathbb{N}\} = \mathbb{N}^2$. Then the substitution operation on real functions preserves conditional \mathcal{F} -computability.

As an application, we will show that the function $\theta(\xi) = \ln \xi$ is conditionally \mathcal{M}^2 -computable. Let us consider the function θ° having domain $\{(\xi_1, \xi_2) \in \mathbb{R}^2 | \xi_1 > 0, \xi_1 \xi_2 \ge 1\}$ and defined by $\theta^\circ(\xi_1, \xi_2) = \ln \xi_1$. This function is uniformly \mathcal{M}^2 -computable by [SkWeGe10], hence it is conditionally \mathcal{M}^2 -computable. On the other hand, $\theta(\xi) = \theta^\circ(\xi, 1/\xi)$ for all $\xi \in \text{dom}(\theta)$.

Since the arctan, arcsin, arccos, sine and cosine functions are shown in [SkWeGe10] to be uniformly \mathcal{M}^2 -computable, and so are the sum, difference and product functions, as well as the functions $\sqrt[n]{\xi}$, n = 2, 3, ..., we may conclude that all elementary functions of calculus are conditionally \mathcal{M}^2 -computable.

Substitution in Conditionally \mathcal{F} -Computable Real Functions

Theorem

Let the class \mathcal{F} contain the addition function and one-argument functions L and R such that $\{(L(s), R(s)) | s \in \mathbb{N}\} = \mathbb{N}^2$. Then the substitution operation on real functions preserves conditional \mathcal{F} -computability.

As an application, we will show that the function $\theta(\xi) = \ln \xi$ is conditionally \mathcal{M}^2 -computable. Let us consider the function θ° having domain $\{(\xi_1, \xi_2) \in \mathbb{R}^2 | \xi_1 > 0, \xi_1 \xi_2 \ge 1\}$ and defined by $\theta^\circ(\xi_1, \xi_2) = \ln \xi_1$. This function is uniformly \mathcal{M}^2 -computable by [SkWeGe10], hence it is conditionally \mathcal{M}^2 -computable. On the other hand, $\theta(\xi) = \theta^\circ(\xi, 1/\xi)$ for all $\xi \in \text{dom}(\theta)$.

Since the arctan, arcsin, arccos, sine and cosine functions are shown in [SkWeGe10] to be uniformly \mathcal{M}^2 -computable, and so are the sum, difference and product functions, as well as the functions $\sqrt[n]{\xi}$, $n = 2, 3, \ldots$, we may conclude that all elementary functions of calculus are conditionally \mathcal{M}^2 -computable.

Local uniform \mathcal{F} -computability of the conditionally \mathcal{F} -computable functions

Let $N \in \mathbb{N}$ and $\theta : D \to \mathbb{R}$, where $D \subseteq \mathbb{R}^N$. The function θ will be called *locally uniformly* \mathcal{F} -computable if any point of D has some neighbourhood U such that the restriction of θ to $D \cap U$ is uniformly \mathcal{F} -computable.

Theorem

Let for any $a, b \in \mathbb{N}$ the class \mathcal{F} contain the two-argument function whose value at (x, y) is b or y depending on whether or not x = a. Let also all one-argument constant functions in \mathbb{N} belong to \mathcal{F} . Then all conditionally \mathcal{F} -computable real functions are locally uniformly \mathcal{F} -computable.

This theorem and a characterization theorem from [Skxx] imply that, under the assumptions about \mathcal{F} in them, if θ is a conditionally \mathcal{F} -computable function then each point of dom (θ) has some neighbourhood U such that θ is uniformly continuous in dom $(\theta) \cap U$.

Local uniform \mathcal{F} -computability of the conditionally \mathcal{F} -computable functions

Let $N \in \mathbb{N}$ and $\theta : D \to \mathbb{R}$, where $D \subseteq \mathbb{R}^N$. The function θ will be called *locally uniformly* \mathcal{F} -computable if any point of D has some neighbourhood U such that the restriction of θ to $D \cap U$ is uniformly \mathcal{F} -computable.

Theorem

Let for any $a, b \in \mathbb{N}$ the class \mathcal{F} contain the two-argument function whose value at (x, y) is b or y depending on whether or not x = a. Let also all one-argument constant functions in \mathbb{N} belong to \mathcal{F} . Then all conditionally \mathcal{F} -computable real functions are locally uniformly \mathcal{F} -computable.

This theorem and a characterization theorem from [Skxx] imply that, under the assumptions about \mathcal{F} in them, if θ is a conditionally \mathcal{F} -computable function then each point of dom (θ) has some neighbourhood U such that θ is uniformly continuous in dom $(\theta) \cap U$.

Local uniform \mathcal{F} -computability of the conditionally \mathcal{F} -computable functions

Let $N \in \mathbb{N}$ and $\theta : D \to \mathbb{R}$, where $D \subseteq \mathbb{R}^N$. The function θ will be called *locally uniformly* \mathcal{F} -computable if any point of D has some neighbourhood U such that the restriction of θ to $D \cap U$ is uniformly \mathcal{F} -computable.

Theorem

Let for any $a, b \in \mathbb{N}$ the class \mathcal{F} contain the two-argument function whose value at (x, y) is b or y depending on whether or not x = a. Let also all one-argument constant functions in \mathbb{N} belong to \mathcal{F} . Then all conditionally \mathcal{F} -computable real functions are locally uniformly \mathcal{F} -computable.

This theorem and a characterization theorem from $[Sk \times x]$ imply that, under the assumptions about \mathcal{F} in them, if θ is a conditionally \mathcal{F} -computable function then each point of dom (θ) has some neighbourhood U such that θ is uniformly continuous in dom $(\theta) \cap U$. Some Computable Real Functions which are not Conditionally \mathcal{F} -Computable, whatever be the Class \mathcal{F}

Let
$$\theta : \mathbb{R} \setminus \{1, \frac{1}{2}, \frac{1}{3}, \ldots\} \to \mathbb{R}$$
 be defined by

$$\theta(\xi) = \sum_{k=1}^{\infty} \frac{1}{2^k} \sigma\left(\xi - \frac{1}{k}\right) \,,$$

where σ is the restriction of the sign function to $\mathbb{R} \setminus \{0\}$. The function θ is computable in the extended sense of [Gr 55], but there exists no neibourhood U of 0 such that θ is uniformly continuous in dom $(\theta) \cap U$. By the statement in the last paragraph of the previous slide, θ is not conditionally \mathcal{F} -computable for $\mathcal{F} = \bigcup_{m \in \mathbb{N}} \mathbb{T}_m$, therefore it is not conditionally \mathcal{F} -computable, whatever be the class \mathcal{F} of total functions in \mathbb{N} .

Another similar function is the one obtained from the elementary function $\xi \arctan\left(\tan \frac{1}{\xi}\right)$ by extending it as 0 for $\xi = 0$.

Some Computable Real Functions which are not Conditionally \mathcal{F} -Computable, whatever be the Class \mathcal{F}

Let
$$\theta : \mathbb{R} \setminus \{1, \frac{1}{2}, \frac{1}{3}, \ldots\} \to \mathbb{R}$$
 be defined by

$$\theta(\xi) = \sum_{k=1}^{\infty} \frac{1}{2^k} \sigma\left(\xi - \frac{1}{k}\right) \,,$$

where σ is the restriction of the sign function to $\mathbb{R} \setminus \{0\}$. The function θ is computable in the extended sense of [Gr 55], but there exists no neibourhood U of 0 such that θ is uniformly continuous in dom $(\theta) \cap U$. By the statement in the last paragraph of the previous slide, θ is not conditionally \mathcal{F} -computable for $\mathcal{F} = \bigcup_{m \in \mathbb{N}} \mathbb{T}_m$, therefore it is not conditionally \mathcal{F} -computable, whatever be the class \mathcal{F} of total functions in \mathbb{N} .

Another similar function is the one obtained from the elementary function $\xi \arctan\left(\tan\frac{1}{\xi}\right)$ by extending it as 0 for $\xi = 0$.

Uniform \mathcal{F} -computability of the locally uniformly \mathcal{F} -computable functions with compact domains

Theorem

Let the class \mathcal{F} be closed under substitution, and let \mathcal{F} contain the projection functions, the successor function, the addition function, the function $\lambda xy.x \div y$ and the function $\lambda xy.x(1 \div y)$. Then all locally uniformly \mathcal{F} -computable real functions with compact domains are uniformly \mathcal{F} -computable.

Corollary

Under the assumptions of the above theorem, all conditionally \mathcal{F} -computable real functions with compact domains are uniformly \mathcal{F} -computable.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Uniform \mathcal{F} -computability of the locally uniformly \mathcal{F} -computable functions with compact domains

Theorem

Let the class \mathcal{F} be closed under substitution, and let \mathcal{F} contain the projection functions, the successor function, the addition function, the function $\lambda xy.x \div y$ and the function $\lambda xy.x(1 \div y)$. Then all locally uniformly \mathcal{F} -computable real functions with compact domains are uniformly \mathcal{F} -computable.

Corollary

Under the assumptions of the above theorem, all conditionally \mathcal{F} -computable real functions with compact domains are uniformly \mathcal{F} -computable.

Some Comments

The conditional \mathcal{F} -computability of real functions has some similarity in its spirit with the notion of a real function in \mathcal{F} introduced in [TeZi 10] (under some restrictions on the class \mathcal{F}) for functions whose domains are open sets. However, there are many essential differences between the two notions. For instance, if \mathcal{F} is the class of the lower elementary functions then the class of the real functions in \mathcal{F} is not closed under substitution, it is not true that it contains all elementary functions of calculus, and there are real functions in \mathcal{F} which are not computable in the extended sense of [Gr 55].

References

- [Gr 55] Grzegorczyk, A.: Computable functionals. Fund. Math., 42, 168–202 (1955)
- [SkWeGe 10] Skordev, D., Weiermann, A., Georgiev, I.: *M*²-computable real numbers. J. Logic Comput. (Advance Access published September 21, 2010), doi:10.1093/logcom/exq050
- [Sk xx] Skordev, D.: Uniform computability of real functions.
 In: Collection of Summaries of Talks Delivered at the Scientific Session on the Occasion of the 120th Anniversary of FMI (Sofia, October 24, 2009) (to appear)
- [TeZi 10] Tent, K., Ziegler, M.: Computable functions of reals. Münster J. Math., 3, 43–66 (2010)
 (A preliminary version appeared at arxive.org in March 2009 under the title "Low functions of reals")