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Proof Mining what we do

What more do we know if we have proved a theorem by
restricted means than if we merely know that it is true.

Figure: Georg Kreisel
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An example of proof mining

Proof Mining

what we do

G. Kreisel was speaking of Unwinding proofs, the name proof mining was
actually suggested by D. Scott.

The picture was taken during the Herbrand Centenary Lecture at

Colloquium Logicum 2008 in Darmstadt.



Proof Mining what we do

1 Find a suitable
theorem.

2 Analyze the proof.

3 Extract the
computational
content.

1 Find a suitable field in mathematics.

2 Find a suitable theorem.

3 Find a suitable proof.

4 Analyze the proof.

5 Extract the computational content.

6 Obtain some additional information
about the theorem.

7 Obtain some additional information
about the field.
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An example of proof mining

Proof Mining

what we do

In general one can almost always obtain computational information about
the theorem, though ideally we hope to obtain uniformity results.



1 Find a suitable
theorem.

2 Analyze the proof.

3 Extract the
computational
content.

1 Find a suitable field in mathematics.

2 Find a suitable theorem.

3 Find a suitable proof.

4 Analyze the proof.

5 Extract the computational content.

6 Obtain some additional information
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An example of proof mining

Proof Mining

what we do

In general one never knows, though ideally we hope to obtain some sort
of a logical pattern which assures the uniformity or the computability
results.



Proof Mining the nice part and its similarities to CAAG

1 Find a suitable theorem. Logical Metatheorems

2 Analyze the proof. Proof Interpretations – Dialectica, Negative, n.c.i

3 Extract the computational content. Soundness of the Proof
Interpretations

Figure: Kurt Gödel
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1 Find a suitable theorem. Logical Metatheorems

2 Analyze the proof. Proof Interpretations – Dialectica, Negative, n.c.i

3 Extract the computational content. Soundness of the Proof
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An example of proof mining

Proof Mining

the nice part and its similarities to CAAG

Recall the talks of Ulrich Berger and Trifon Trifonov.

Recall the talk of Vasco Brattka - Computer Analysis in the Weihrauch

Lattice, BW = Sigma 01 jump of WKL



Ergodic Theory context

Figure: J. von Neumann

Theorem (The Riesz version of the von
Neumann mean ergodic theorem)

For any linear operator T on a Hilbert space
X , which is nonexpansive, i.e.

∀u, v ∈ X
(
‖Tu − Tv‖ ≤ ‖u − v‖

)
,

the sequence of the Cesàro means

Anx :=
1

n + 1

n∑
i=0

T ix ,

converges in norm for any starting point x.
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Ergodic Theory context

It follows from an example by Genel and Lindenstrauss [Genel 1975] that
there is a nonexpansive operator on the unit ball of `2, for which the
sequence of the Cesàro means does not converge strongly.
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Ergodic Theory context

Let H be a Hilbert space, C a subset of H and T : C → C a (possibly
nonlinear) mapping.

Definition (Baillon 1975)

−C = C and ∀u ∈ C
(
T (−u) = −Tu

)
, (odd)

Definition (Brézis, Browder 1976)

∃c ∈ R ∀u, v ∈ C (BB)(
‖Tu + Tv‖2 ≤ ‖u + v‖2 + c(‖u‖2 − ‖Tu‖2 + ‖v‖2 − ‖Tv‖2)

)
.

Definition (Wittmann 1990)

∀u, v ∈ C (‖T nu + T nv‖ ≤ αn‖x + y‖), (W−)
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Ergodic Theory context

MET : von Neumann 1931
linear, nonexpansive operator | strong convergence

(Avigad, Gerhardy, Towsner 2010)3

( Leuştean, Kohlenbach 2009)weak

convergence

yy

odd

��

Halpern

iteration

%%
Baillon 1975

(Kohlenbach 2010)
more general

averaging process
��

Baillon 1976
(this paper)

(BB)

��

(W−)

''

Wittman 1992
(Kohlenbach 2011)

Brézis, Browder 1976
(Kohlenbach 2010)

Brézis, Browder 1976
(unknown)

Wittmann 1990
(this paper)

Figure: Nonlinear ergodic theorems and their finitisations.
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Ergodic Theory Analyzed theorem

Theorem (Wittmann 1990)

Let S be a subset of a Hilbert space and T : S → S be a mapping
satisfying

∀u, v ∈ C (‖T nu + T nv‖ ≤ ‖x + y‖). (W)

Then for any x ∈ S the sequence of the Cesàro means

Anx :=
1

n + 1

n∑
i=0

T ix

is norm convergent.
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Results

In general, the sequence of the ergodic averages does not have a
computable rate of convergence (even for the von Neumann’s mean
ergodic theorem for a separable space and computable x and T ), as was
shown by Avigad, Gerhardy and Towsner in 2008.
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An example of proof mining

Results

This is the same reference as in the Figure above concerning the

finitization of MET, see [1]



Results

The metastable version has a primitive recursive bound.

Theorem

Given the assumptions from Wittmann’s strong ergodic theorem,

∀u, v ∈ C (‖T nu + T nv‖ ≤ ‖x + y‖). (W)

the following holds

∀b, l ∈ N, g : N→ N, x ∈ S ∃m ≤ M(l , g , b)(
‖x‖ ≤ b → ‖Amx − Am+g(m)x‖ ≤ 2−l

)
,

for a primitive recursive M.
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Results

M(l , g , b) := (N(2l + 7, gM) + P(2l + 7, gM , b))b22l+8 + 1,

P(l , g , b) := P0(l ,F (l , g ,N(l , g), b), b),

F (l , g , n, b)(p) := p + n + g̃((n + p)b2l+1),

N(l , g , b) :=
(
H(l , g , b)

)b22l+2

(0),

H(l , g , b)(n) := n + P0(l ,F (l , g , n, b)) + g̃((n + P0(l ,F (l , g , n, b)))b2l+1),

where

P0(l , f , b) := f̃ b22l (0), g̃(n) := n + g(n), gM(n) := max
i≤n+1

g(i).
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An example of proof mining

Results

Note that apart from the counterfunction g and the precision l , this
bound depends only on b and not on S , T or x .



Logic and a priori knowledge introduction to metatheorems

The existence of such uniform bounds can be obtained by means of a
general logical metatheorem.
(see [Kohlenbach 2005] and [Gerhardy, Kohlenbach 2008])

Conditions to apply the metatheorems:

1 The proof does not use axioms or rules which are
too strong.

2 The analyzed theorem in its logical form is not too
complex in terms of quantification.
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Logic and a priori knowledge a metatheorem for our specific scenario

Theorem (Gerhardy-Kohlenbach 2008 - specific case 1)

Let ϕ∀, resp. ψ∃, be ∀- resp. ∃-formulas that contain only x , z , f free,
resp. x , z , f , v free. Assume that Aω[X , 〈·, ·〉, S ] proves the following
sentence:

∀x ∈ NN, z ∈ S , f ∈ SS
(
ϕ∀(x , z , f )→ ∃v ∈ N ψ∃(x , z , f , v)

)
.

Then there is a computable functional F : NN × N× NN → N s. t. the
following holds in all non-trivial (real) inner product spaces (X , 〈·, ·〉) and
for any subset S ⊆ X

∀x ∈ NN, z ∈ S , b ∈ N, f ∈ SS , f ∗ ∈ NN(
Maj(f ∗, f ) ∧ ‖z‖ ≤ b ∧ ϕ∀(x , z , f )→ ∃v ≤ F (x , b, f ∗) ψ∃(x , z , f , v)

)
,

where

Maj(f ∗, f ) :≡ ∀n ∈ N∀z ∈ S
(
‖z‖ ≤R n→ ‖f (z)‖ ≤R f ∗(n)

)
.
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Logic and a priori knowledge

a metatheorem for our specific scenario

The theorem holds analogously for finite tuples.



Logic and a priori knowledge a metatheorem for our specific scenario

Wittmann’s theorem has the following form:

∀l ∈ N, g ∈ NN, x ∈ S ,T ∈ SS (+)(
W(T )→ ∃m ∈ N (‖Amx − Am+g(m)x‖ < 2−l)

)
.

the conclusion has the form ∃m ψ∃(m, l , g)

the assumption ∀x , y ∈ S
(
‖Tx + Ty‖ ≤ ‖x + y‖

)
has the form ϕ∀(T )

So by setting
x :=N×NN l , g , z :=S x , f :=S→S T , f ∗ :=N→N id, ϕ∀(x , z , f ) :≡W(T ),

∃v ∈ N ψ∃(x , z , f , v) :≡ ∃m ∈ N
(
‖Amx − Am+g(m)x‖ < 2−l

)
,

we obtain that there is a computable bound M : N× NN × N→ N, s.t.

∀l ∈ N, g ∈ NN, x ∈ S ,T ∈ SS(
W(T ) ∧ ‖x‖ ≤ b → ∃m ≤N M(l , g , b) (‖Amx − Am+g(m)x‖ ≤ 2−l)

)
.
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Logic and a priori knowledge

a metatheorem for our specific scenario

W(T ) already implies Maj(id,T ) (here id stands simply for the identity
function on N), since W(T ) applied to x = y = z implies

∀z ∈ S
(
‖T (z)‖ ≤ ‖z‖

)
.



Logic and a priori knowledge is it all?

No.

the proof can be formalized in Aω[X , 〈·, ·〉,S ]

non-trivial principles needed in the proof are the existence of the
infimum/supremum of bounded sequences and the principle of
convergence for bounded monotone sequences.

Moreover, since the bound itself has only functions and numbers as
arguments, it follows from Schwichtenberg 79 and Kohlenbach 99
that the bound is not only computable, but that the bound is a
primitive recursive functional in the sense of Gödel’s T .
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Pavol Safarik (Darmstadt) An example of proof mining CiE 2011 16 / 21



Logic and a priori knowledge is it all?

No.

the proof can be formalized in Aω[X , 〈·, ·〉,S ]

non-trivial principles needed in the proof are the existence of the
infimum/supremum of bounded sequences and the principle of
convergence for bounded monotone sequences.

Moreover, since the bound itself has only functions and numbers as
arguments, it follows from Schwichtenberg 79 and Kohlenbach 99
that the bound is not only computable, but that the bound is a
primitive recursive functional in the sense of Gödel’s T .
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Logic and a priori knowledge

is it all?

Except for the question of the use of the axiom of extensionality (full
extensionality is in general unavailable in any proof-theoretic extraction of
computational bounds). Generally, one can avoid the use of full
extensionality in proofs of statements about continuous objects. Note
that in particular any nonexpansive operator is also continuous. However,
in our case, the operator T may be discontinuous. Fortunately, Wittmann
proves his main results as a consequence of a statement about a simple
sequence of elements in S , which as such is independent of T (see
Theorem 2.3 in [9]), whereby all relevant equalities are provable directly.
Therefore the rule of extensionality suffices to formalize his proof.
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Hence the existence of a uniform computable bound for the metastable
version can be inferred from the metatheorem in [2].
Furthermore, since the metatheorem is established by proof-theoretic
reasoning, it provides not only the existence of a uniform bound but also
a procedure for its extraction.

Now, in general such a bound might need so called bar-recursion (BR),

which is required to interpret the schema of full comprehension over

numbers in Spector’s system (see [8]).
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Both of these principles need only bar-recursion restricted to numbers
and functions (BR0,1) and not full BR. (Kohlenbach shows in [6, 5] that
both principles are provable from arithmetical comprehension which is
interpreted in T0 + BR0,1.)

The corresponding papers to Schwichtenberg 79 and Kohlenbach 99 are

[7, 4]



Logic and a priori knowledge arithmetization

The nonconstructive, or ineffective, content of Wittmann’s proof are the
principle of convergence for bounded monotone sequences of real numbers
and the existence of infimum for bounded sequences of real numbers. For
a given sequence, the ineffective principles can be replaced by weaker
statements about natural numbers only.

In the presence of arithmetical comprehension, these weaker (arithmetical)
statements are equivalent to the original (analytical) principles. For the
convergence we work with the arithmetic Cauchy property and for infimum
we give for any precision an approximate infimum.

1 Arithmetized convergence of a monotone bounded sequence a(·):

∀l∃n∀m ≥ n
(
|an − am| ≤ 2−l

)
.

2 Arithmetized existence of the infimum of a bounded sequence a(·):

∀l∃n∀m
(
an − am ≤ 2−l

)
.
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Logic and a priori knowledge

arithmetization

(as opposed to statements about objects in NN).
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Logic and a priori knowledge

arithmetization

While the analytical principles are actually known to be equivalent to

arithmetic comprehension (see Simpson 99 and – for more detailed

results – Kohlenbach 00), the arithmetic versions are equivalent to

Σ0
1-induction and hence have a functional interpretation by ordinarily

primitive recursive functionals (see Kohlenbach 08).
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Logic and a priori knowledge

arithmetization

Formulated in the usual way, both principles state the existence of a real

number, which we represent as fast converging Cauchy sequences of

rationals4 encoded as number theoretic functions (i.e. functions in NN).
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Logic and a priori knowledge

arithmetization

Of course, in this way we don’t get a single point which is the limit point

or infimum. Therefore we have to analyze the proof and see whether

such points are actually needed or whether these arithmetical versions

suffice. Here, fortunately, it turns out that the latter is the case (see [3]

for a general discussion of this point).
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