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Efficiency refinements in the Dialectica interpretation

Introduction

Program extraction

From constructive proofs:
I Curry-Howard correspondence
I proofs as functional programs with verification
I modified realisability: proof→ program + certificate

Why would we want to extract from non-constructive proofs?
I sometimes they are easier than constructive ones

I undecidable case distinctions
I sometimes we have no hope for an efficient algorithm

I NP-complete problems
I sometimes provide more interesting solutions

I use of continuations and accumulating parameters



Efficiency refinements in the Dialectica interpretation

Introduction

Program extraction

From constructive proofs:
I Curry-Howard correspondence
I proofs as functional programs with verification
I modified realisability: proof→ program + certificate

Why would we want to extract from non-constructive proofs?
I sometimes they are easier than constructive ones

I undecidable case distinctions
I sometimes we have no hope for an efficient algorithm

I NP-complete problems
I sometimes provide more interesting solutions

I use of continuations and accumulating parameters



Efficiency refinements in the Dialectica interpretation

Introduction

Program extraction

From constructive proofs:
I Curry-Howard correspondence
I proofs as functional programs with verification
I modified realisability: proof→ program + certificate

Why would we want to extract from non-constructive proofs?
I sometimes they are easier than constructive ones

I undecidable case distinctions
I sometimes we have no hope for an efficient algorithm

I NP-complete problems
I sometimes provide more interesting solutions

I use of continuations and accumulating parameters



Efficiency refinements in the Dialectica interpretation

Introduction

Program extraction

From constructive proofs:
I Curry-Howard correspondence
I proofs as functional programs with verification
I modified realisability: proof→ program + certificate

Why would we want to extract from non-constructive proofs?
I sometimes they are easier than constructive ones

I undecidable case distinctions
I sometimes we have no hope for an efficient algorithm

I NP-complete problems
I sometimes provide more interesting solutions

I use of continuations and accumulating parameters



Efficiency refinements in the Dialectica interpretation

Introduction

Program extraction

From constructive proofs:
I Curry-Howard correspondence
I proofs as functional programs with verification
I modified realisability: proof→ program + certificate

Why would we want to extract from non-constructive proofs?
I sometimes they are easier than constructive ones

I undecidable case distinctions
I sometimes we have no hope for an efficient algorithm

I NP-complete problems
I sometimes provide more interesting solutions

I use of continuations and accumulating parameters



Efficiency refinements in the Dialectica interpretation

Introduction

Program extraction

From constructive proofs:
I Curry-Howard correspondence
I proofs as functional programs with verification
I modified realisability: proof→ program + certificate

Why would we want to extract from non-constructive proofs?
I sometimes they are easier than constructive ones

I undecidable case distinctions
I sometimes we have no hope for an efficient algorithm

I NP-complete problems
I sometimes provide more interesting solutions

I use of continuations and accumulating parameters



Efficiency refinements in the Dialectica interpretation

Introduction

Program extraction

From constructive proofs:
I Curry-Howard correspondence
I proofs as functional programs with verification
I modified realisability: proof→ program + certificate

Why would we want to extract from non-constructive proofs?
I sometimes they are easier than constructive ones

I undecidable case distinctions
I sometimes we have no hope for an efficient algorithm

I NP-complete problems
I sometimes provide more interesting solutions

I use of continuations and accumulating parameters



Efficiency refinements in the Dialectica interpretation

Introduction

Program extraction

From constructive proofs:
I Curry-Howard correspondence
I proofs as functional programs with verification
I modified realisability: proof→ program + certificate

Why would we want to extract from non-constructive proofs?
I sometimes they are easier than constructive ones

I undecidable case distinctions
I sometimes we have no hope for an efficient algorithm

I NP-complete problems
I sometimes provide more interesting solutions

I use of continuations and accumulating parameters



Efficiency refinements in the Dialectica interpretation

Introduction

Program extraction

From constructive proofs:
I Curry-Howard correspondence
I proofs as functional programs with verification
I modified realisability: proof→ program + certificate

Why would we want to extract from non-constructive proofs?
I sometimes they are easier than constructive ones

I undecidable case distinctions
I sometimes we have no hope for an efficient algorithm

I NP-complete problems
I sometimes provide more interesting solutions

I use of continuations and accumulating parameters



Efficiency refinements in the Dialectica interpretation

Introduction

Program extraction

From constructive proofs:
I Curry-Howard correspondence
I proofs as functional programs with verification
I modified realisability: proof→ program + certificate

Why would we want to extract from non-constructive proofs?
I sometimes they are easier than constructive ones

I undecidable case distinctions
I sometimes we have no hope for an efficient algorithm

I NP-complete problems
I sometimes provide more interesting solutions

I use of continuations and accumulating parameters



Efficiency refinements in the Dialectica interpretation

Introduction

Gödel’s Dialectica interpretation

I Formulas A are problems
I Formulas specify the type of the solution t : τ+(A)
I Solutions are challenged by terms y : τ−(A)
I Translations specify when t is a solution of A for a

challenge y (|A|ty )
I Proposed by Gödel (1958)
I Motivation: interpret classical arithmetic in a quantifier-free

constructive system with higher types.
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Introduction

Efficiency problems

1. every object term used in the proof is copied multiple times
I terms appear in ∀ elimination
I copied once for every occurrence of the quantified variable
I reason: substitution is used on the meta-level

2. some computations are only used for verification
I example: is the extracted function invertible?
I to assert this we may need to compute its inverse
I but the extracted program need not compute it

3. same conditions are checked multiple times
I assumptions can be used more than once in a proof
I Dialectica combines two counterexamples into one
I if one of them is verified, no need to check further
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Introduction

Efficiency improvements

1. let definitions instead of substitutions
I (λxs)t instead of s [x := t ]
I a proof cut should be translated to an application
I programmer’s slang: local variables

2. annotate some parameters as computationally uniform
I introduced by Berger, adapted by Hernest
I automatic annotation (Ratiu & Schwichtenberg)
I programmer’s slang: dead code cleanup

3. remember counterexample checks
I annotate every counterexample with a boolean flag
I do not compute new counterexamples after one is found
I programmers slang: memoization
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Quasi-linear extraction

Exponential example
Consider a proof of totality:

∀x ,y∃z
(
z = 2x(x + y)

)
Extracted programs:

I Dialectica:

f (0, y) = y
f (x + 1, y) = f (x , y + 1) + f (x , y + 1)

I Modified realisability:

f (0, y) = y
f (x + 1, y) = (λz,gg(z))(f (x , y + 1))(λzz + z)
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Quasi-linear extraction

Avoid repetition
Definition contexts

E ::= []� | (Eρ⇒σtρ)σ | (λxρEσ)ρ⇒σ,

E [tρ] := E [� := ρ] [[] := t ]

I Let P be a proof of A from assumptions Ci

I Split extracted terms in two parts
I Binding term (context) [[P]] : σ−(A)⇒ �
I Context-dependent terms [[P]]+ : σ+(A), [[P]]−i : σ−(Ci)

I Combine at the end:

{|P|} := [[P]][
〈
[[P]]+, [[P]]−i , . . .

〉
]
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Quasi-linear extraction
In theory:

Theorem
Let P be a proof of A. Then the extracted program {|P|}+ is a
witness of A and size({|P|}+) = O(size(P) ·msl(P)2).
In practice:

R := λy6 let x := y6 in λy7 let f1 := s in f1y7, where
s := R x t0 (λxλplet xp := p in t1),
t0 := λy0 let y := y0 in let y1 := y in y1,

t1 := λy2 let f0 := (λy3 let z := y3 in let y4 := z + z in y4) in
let y := y2 in let y5 := y + 1 in let z0 := xpy5 in f0z0.
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Quasi-linear extraction

Affine reductions

Let #x(t) denote the number of free occurrences of x in t .
Consider

(λxs)t 7→a s [x := t ] , if #x(t) ≤ 1

Theorem
7→a is strongly normalising and confluent.
Exponential example after affine reductions:

R := λxR x (λyy)
(
λxλpλy (λzz + z)(p(y + 1))

)
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Uniform annotations

Recursive uniformisation

Let R ⊆ N× N be recursive with dom(R) = N.
Then there is a recursive function uniformising R.

We consider initial approximations of a uniformising function.

∀x∃yR(x , y)→ ∀n∃l
(
|l | = n ∧ ∀m(m < n→ R(n −m − 1, lm))

)
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Uniform annotations

Extracted programs
∀x ∃̃yR(x , y)→ ∀n∃̃l

(
|l | = n ∧̃ ∀m(m < n→ R(n −m − 1, lm))

)
t := 〈t+, t−〉
t+ := λf ,nRn (λgnil) (λn,p,g(fn) :: ph)
t− := λf ,nRn (λg0) (λn,p,g if R(n, fn) then ph else n)
h := λl if g((fn) :: l) = 0 then 0 else g((fn) :: l)− 1
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I t+ — realiser for ∃̃l

I t− — challenge for ∀x

I f : N⇒ N — realising function for ∀x ∃̃y

I g,h : L(N)⇒ N — challenging functions for ∀m
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Uniform annotations

Computational uniformities
∀x ∃̃yR(x , y)→ ∀n∃̃l

(
|l | = n ∧̃ ∀m(m < n→ R(n −m − 1, lm))

)
t := 〈t+, t−〉
t+ := λf ,nRn (λgnil) (λn,p,g(fn) :: ph)
t− := λf ,nRn (λg0) (λn,p,g if R(n, fn) then ph else n)
h := λl if g((fn) :: l) = 0 then 0 else g((fn) :: l)− 1

The functions g and h are computationally irrelevant!
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Uniform annotations

Definition
A proof is uniformly interpretable if for every needed case
distinction on a formula C it has no uniform annotations.

Definition
A uniformly interpretable proof is computationally correct if

rule flags restriction

λx M
−
∀ x /∈

⋃
FV({|M|}−i )

±
∀ x /∈ FV({|M|})

λu0 M
−−−−→ x0 /∈

⋃
FV({|M|}−i )

−−−−→ y /∈
⋃

FV({|M|}−i y)
− −−−−−→ x0, y /∈

⋃
FV({|M|}−i y)

±−−−→ x0 /∈ FV({|M|})
± −−−−−→ x0 /∈ FV({|M|})

y /∈
⋃

FV({|M|}−i y)
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A proof is uniformly interpretable if for every needed case
distinction on a formula C it has no uniform annotations.

Definition
A uniformly interpretable proof is computationally correct if

rule flags restriction

λx M
−
∀ x /∈

⋃
FV({|M|}−i )

±
∀ x /∈ FV({|M|})

λu0 M
−−−−→ x0 /∈

⋃
FV({|M|}−i )

−−−−→ y /∈
⋃

FV({|M|}−i y)
− −−−−−→ x0, y /∈

⋃
FV({|M|}−i y)

±−−−→ x0 /∈ FV({|M|})
± −−−−−→ x0 /∈ FV({|M|})

y /∈
⋃

FV({|M|}−i y)
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Counterexample marking

Avoiding recomputations
∀x ∃̃yR(x , y)→ ∀n∃̃l

(
|l | = n ∧̃ ∀U

m(m < n→ R(n −m − 1, lm))
)

t := 〈t+, t−〉
t+ := λf ,nRn nil (λn,p(fn) :: p)
t− := λf ,nRn 0 (λn,pif R(n, fn) then p else n)

t+ and t− are calculated using the same recursive scheme.
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Avoiding recomputations
∀x ∃̃yR(x , y)→ ∀n∃̃l

(
|l | = n ∧̃ ∀U

m(m < n→ R(n −m − 1, lm))
)

t := λf ,nRn 〈nil,0〉 (λn,pl ,pn let m := fn in
〈m :: pl , if R(n,m) then pn else n〉)

t+ and t− are calculated using the same recursive scheme.

We can pack the two terms into a single computation.
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Counterexample marking

Optimising recursion
∀x ∃̃yR(x , y)→ ∀n∃̃l

(
|l | = n ∧̃ ∀U

m(m < n→ R(n −m − 1, lm))
)

t := λf ,nRn 〈nil,0〉 (λn,pl ,pn let m := fn in
〈m :: pl , if R(n,m) then pn else n〉)

Can we optimise further?
I positive computation is optimal
I negative computation searches for the last failure index
I it is sufficient to stop at the first failure index
I we mark successful counterexample candidates as n I ff
I and skip further checks if they are redundant
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Counterexample marking

I t I tt — we have no information about the validity of (|Ci |)xi
t ,

I t I ff — we have checked that ¬(|Ci |)xi
t ,

Lemma
For any formula in NAω and let x : ρ∗(C) be a variable. Then
there is a term T C

./
: ρ((C)⇒ ρ((C)⇒ ρ((C) with

FV(T C
./
) ⊆ FV(C) ∪ {x}, such that for t1, t2 : ρ((C)

Ai : (|C|)x
s → (|C|)x

si
,

B : (|C|)x
s → at(m),

where ti := si I mi and s I m = T C
./

t1t2.
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Conclusion

Conclusion and future work

The original Dialectica intepretation can be modified in a sound
way to produce better programs:

I programs are shorter (no code repetition, no redundant
code)

I better worst time complexity (no recomputation, no
redundant code)

I better average time complexity (“abort” effect)

Future work
I implement optimizations in Minlog
I experiment with larger case studies
I find other general improvements
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Conclusion and future work

The original Dialectica intepretation can be modified in a sound
way to produce better programs:

I programs are shorter (no code repetition, no redundant
code)

I better worst time complexity (no recomputation, no
redundant code)

I better average time complexity (“abort” effect)
Future work

I implement optimizations in Minlog
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Conclusion

Thank you

Thank you for your attention!
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