Efficiency refinements in the Dialectica interpretation

Efficiency refinements in the Dialectica
interpretation

Trifon Trifonov

Faculty of Mathematics and Informatics, Sofia University
Supported by the European Social Fund within project
BG051P0O001-3.3.04/28.08.2009.

Computability in Europe 2011
Sofia, 29.06.2011

Efficiency refinements in the Dialectica interpretation
L Introduction

Program extraction

From constructive proofs:

» Curry-Howard correspondence

N

Efficiency refinements in the Dialectica interpretation
L Introduction

Program extraction

From constructive proofs:
» Curry-Howard correspondence

» proofs as functional programs with verification

Efficiency refinements in the Dialectica interpretation
L Introduction

Program extraction

From constructive proofs:
» Curry-Howard correspondence
» proofs as functional programs with verification
» modified realisability: proof — program + certificate

Efficiency refinements in the Dialectica interpretation

L Introduction

Program extraction

From constructive proofs:

» Curry-Howard correspondence

» proofs as functional programs with verification

» modified realisability: proof — program + certificate
Why would we want to extract from non-constructive proofs?

Efficiency refinements in the Dialectica interpretation

L Introduction

Program extraction

From constructive proofs:
» Curry-Howard correspondence
» proofs as functional programs with verification
» modified realisability: proof — program + certificate

Why would we want to extract from non-constructive proofs?
» sometimes they are easier than constructive ones

Efficiency refinements in the Dialectica interpretation

L Introduction

Program extraction

From constructive proofs:
» Curry-Howard correspondence
» proofs as functional programs with verification
» modified realisability: proof — program + certificate

Why would we want to extract from non-constructive proofs?
» sometimes they are easier than constructive ones
» undecidable case distinctions

Efficiency refinements in the Dialectica interpretation

L Introduction

Program extraction

From constructive proofs:
» Curry-Howard correspondence
» proofs as functional programs with verification
» modified realisability: proof — program + certificate

Why would we want to extract from non-constructive proofs?
» sometimes they are easier than constructive ones
» undecidable case distinctions
» sometimes we have no hope for an efficient algorithm

Efficiency refinements in the Dialectica interpretation

L Introduction

Program extraction

From constructive proofs:
» Curry-Howard correspondence
» proofs as functional programs with verification
» modified realisability: proof — program + certificate

Why would we want to extract from non-constructive proofs?
» sometimes they are easier than constructive ones
» undecidable case distinctions
» sometimes we have no hope for an efficient algorithm
» NP-complete problems

Efficiency refinements in the Dialectica interpretation

L Introduction

Program extraction

From constructive proofs:
» Curry-Howard correspondence
» proofs as functional programs with verification
» modified realisability: proof — program + certificate
Why would we want to extract from non-constructive proofs?
» sometimes they are easier than constructive ones
» undecidable case distinctions
» sometimes we have no hope for an efficient algorithm
» NP-complete problems
» sometimes provide more interesting solutions

Efficiency refinements in the Dialectica interpretation

L Introduction

Program extraction

From constructive proofs:
» Curry-Howard correspondence
» proofs as functional programs with verification
» modified realisability: proof — program + certificate
Why would we want to extract from non-constructive proofs?
» sometimes they are easier than constructive ones
» undecidable case distinctions
» sometimes we have no hope for an efficient algorithm
» NP-complete problems
» sometimes provide more interesting solutions
» use of continuations and accumulating parameters

Efficiency refinements in the Dialectica interpretation
L Introduction

Godel’s Dialectica interpretation

» Formulas A are problems

Efficiency refinements in the Dialectica interpretation
L Introduction

Godel’s Dialectica interpretation

» Formulas A are problems

» Formulas specify the type of the solution t : 7 (A)

Efficiency refinements in the Dialectica interpretation
L Introduction

Godel’s Dialectica interpretation

» Formulas A are problems
» Formulas specify the type of the solution t : 7 (A)
» Solutions are challenged by terms y : 77 (A)

Efficiency refinements in the Dialectica interpretation

L Introduction

Godel’s Dialectica interpretation

v

Formulas A are problems
Formulas specify the type of the solution ¢t : 71 (A)
Solutions are challenged by terms y : 77 (A)

Translations specify when t is a solution of A for a
challenge y (JA[})

v

v

v

Efficiency refinements in the Dialectica interpretation

L Introduction

Godel’s Dialectica interpretation

v

Formulas A are problems
Formulas specify the type of the solution ¢t : 71 (A)
Solutions are challenged by terms y : 77 (A)

Translations specify when t is a solution of A for a
challenge y (JA[})
Proposed by Gddel (1958)

v

v

v

v

Efficiency refinements in the Dialectica interpretation

L Introduction

Godel’s Dialectica interpretation

» Formulas A are problems

» Formulas specify the type of the solution t : 7 (A)

» Solutions are challenged by terms y : 77 (A)

» Translations specify when t is a solution of A for a
challenge y (JA[})

» Proposed by Gédel (1958)

» Motivation: interpret classical arithmetic in a quantifier-free
constructive system with higher types.

Efficiency refinements in the Dialectica interpretation
L Introduction

Efficiency problems

1. every object term used in the proof is copied multiple times
» terms appear in v elimination
» copied once for every occurrence of the quantified variable
» reason: substitution is used on the meta-level

Efficiency refinements in the Dialectica interpretation

L Introduction

Efficiency problems

1. every object term used in the proof is copied multiple times
» terms appear in V elimination
» copied once for every occurrence of the quantified variable
» reason: substitution is used on the meta-level

2. some computations are only used for verification
» example: is the extracted function invertible?
» to assert this we may need to compute its inverse
» but the extracted program need not compute it

Efficiency refinements in the Dialectica interpretation

L Introduction

Efficiency problems

1. every object term used in the proof is copied multiple times
» terms appear in V elimination
» copied once for every occurrence of the quantified variable
» reason: substitution is used on the meta-level
2. some computations are only used for verification
» example: is the extracted function invertible?
» to assert this we may need to compute its inverse
» but the extracted program need not compute it
3. same conditions are checked multiple times
» assumptions can be used more than once in a proof
» Dialectica combines two counterexamples into one
» if one of them is verified, no need to check further

Efficiency refinements in the Dialectica interpretation
L Introduction

Efficiency improvements

1. let definitions instead of substitutions
» (A\xS)tinstead of s[x :={]
» a proof cut should be translated to an application
» programmer’s slang: local variables

Efficiency refinements in the Dialectica interpretation

L Introduction

Efficiency improvements

1. let definitions instead of substitutions
» (AxS)tinstead of s[x :=]
» a proof cut should be translated to an application
» programmer’s slang: local variables
2. annotate some parameters as computationally uniform
» introduced by Berger, adapted by Hernest

» automatic annotation (Ratiu & Schwichtenberg)
» programmer’s slang: dead code cleanup

Efficiency refinements in the Dialectica interpretation

L Introduction

Efficiency improvements

1. let definitions instead of substitutions
» (AxS)tinstead of s[x :=]
» a proof cut should be translated to an application
» programmer’s slang: local variables
2. annotate some parameters as computationally uniform
» introduced by Berger, adapted by Hernest
» automatic annotation (Ratiu & Schwichtenberg)
» programmer’s slang: dead code cleanup
3. remember counterexample checks
» annotate every counterexample with a boolean flag

» do not compute new counterexamples after one is found
» programmers slang: memoization

Efficiency refinements in the Dialectica interpretation
I—Quasi-linear extraction

Exponential example

Consider a proof of totality:

vayaz(z - 2X(X + }/))

Efficiency refinements in the Dialectica interpretation
LQuasi-linear extraction

Exponential example

Consider a proof of totality:

vx,yElz(z =2"(x + y))
Extracted programs:
» Dialectica:

f(ovy) =y

fx+1,y)=Ffx,y+1)+f(x,y+1)

Efficiency refinements in the Dialectica interpretation

LQuasi-linear extraction

Exponential example
Consider a proof of totality:

VX7yE|z(z - 2X(X + }/))

Extracted programs:
» Dialectica:

f0,y) =y
fx+1,y)=Ffx,y+1)+f(x,y+1)

» Modified realisability:

f(o’y) =Yy
fix+1,y) = (Az99(2))(F(x, ¥y +1))(A22 + 2)

Efficiency refinements in the Dialectica interpretation
I—Quasi-linear extraction

Avoid repetition

Definition contexts

E

E[t") := Eo = p][[] :=]

[0° [(EP=7t7)7 | (Axe E7)777,

Efficiency refinements in the Dialectica interpretation
LQuasi-linear extraction

Avoid repetition

Definition contexts

E

[° | (E=71) | (Ao E7YP7,
E[t") := Eo = p][[] :=]

» Let P be a proof of A from assumptions C;

Efficiency refinements in the Dialectica interpretation

LQuasi-linear extraction

Avoid repetition
Definition contexts
E = [°|(E">7¢) | (wE7)™7,
E[t"] == Efo = p][[] == 1]

» Let P be a proof of A from assumptions C;
» Split extracted terms in two parts

Efficiency refinements in the Dialectica interpretation

LQuasi-linear extraction

Avoid repetition
Definition contexts

E = [P(E=70) | (MmeE7),
E[t") := Eo = p][[] :=]

» Let P be a proof of A from assumptions C;
» Split extracted terms in two parts
» Binding term (context) [P] : o~ (A) = ¢

Efficiency refinements in the Dialectica interpretation

LQuasi—linear extraction

Avoid repetition
Definition contexts
E u= [PI(E771)7 | AwET)"™",
E[tF] := E[o:=p|[[] := 1]

v

Let P be a proof of A from assumptions C;

Split extracted terms in two parts

Binding term (context) [P] : 0 (A) = ©
Context-dependent terms [P]" : o (A), [P]; : e~ (C)

v

v

v

Efficiency refinements in the Dialectica interpretation

LQuasi—linear extraction

Avoid repetition
Definition contexts
E = [°|(E">7¢) | (wE7)™7,
E[tF] := E[o:=p|[[] := 1]

v

Let P be a proof of A from assumptions C;

Split extracted terms in two parts

Binding term (context) [P] : 0 (A) = ©
Context-dependent terms [P]" : o (A), [P]; : e~ (C)
Combine at the end:

{Pl = IPIKIPI" IPT7 -)]

v

v

v

v

Efficiency refinements in the Dialectica interpretation
I—Quasi-linear extraction

Quasi-linear extraction
In theory:

Efficiency refinements in the Dialectica interpretation
LQuasi-linear extraction

Quasi-linear extraction
In theory:

Theorem

Let P be a proof of A. Then the extracted program {|P} " is

witness of A and size({|73|}+) = O(size(P) - msl(P)3?).

a

Efficiency refinements in the Dialectica interpretation

LQuasi-linear extraction

Quasi-linear extraction
In theory:

Theorem

Let P be a proof of A. Then the extracted program {|P} " is a
witness of A and size({|73|}+) = O(size(P) - msl(P)3?).

In practice:

Efficiency refinements in the Dialectica interpretation

LQuasi—linear extraction

Quasi-linear extraction
In theory:

Theorem
Let P be a proof of A. Then the extracted program {|P} " is a
witness of A and size({|73|}+) = O(size(P) - msl(P)3?).

In practice:

R:=\,let x := ygin)\ let f; .= sin f;y7, where

S:=Rxl(AAplet xp, :=pinty),

o :=Aplety =y inlety; == yiny;,

= Apletfy .= (N, letz:=ysinlet ys :=z+zin y,) in
lety =yoinletys ==y +1inlet zy := xpy5 in foz.

Efficiency refinements in the Dialectica interpretation
|—Quasi-linear extraction

Affine reductions

Let #x(t) denote the number of free occurrences of x in t.
Consider

(AxS)t g

s[x:=1], if #x(f) <1

Efficiency refinements in the Dialectica interpretation

LQuasi-linear extraction

Affine reductions

Let #x(t) denote the number of free occurrences of x in t.
Consider

(AxS)t —a s[x:=1], if #x(t) <1

Theorem
g IS Strongly normalising and confluent.

Efficiency refinements in the Dialectica interpretation

LQuasi—linear extraction

Affine reductions

Let #«(t) denote the number of free occurrences of x in t.
Consider

(AxS)t —a s[x:=1], if #x(t) <1

Theorem
g IS Strongly normalising and confluent.

Exponential example after affine reductions:

R:= MR x(A\yy) (Aedpry(A2z + 2)(p(y + 1))

Efficiency refinements in the Dialectica interpretation
L Uniform annotations

Recursive uniformisation

Let R C N x N be recursive with dom(R) = N
Then there is a recursive function uniformising R

Efficiency refinements in the Dialectica interpretation

L Uniform annotations

Recursive uniformisation

Let R C N x N be recursive with dom(R) = N.
Then there is a recursive function uniformising R.

We consider initial approximations of a uniformising function.

Vi 3yR(X,) = VoI (|1 = nAYm(m < n— R(n—m—1,In)))

Efficiency refinements in the Dialectica interpretation

L Uniform annotations

Extracted programs
Y3y R(X, ¥) = Vadi (|| = nAYm(m < n— R(n—m—1,1n)))

t o= (t,,t)

ty = A pR n(Agnil) (Anp,g(fn) :: ph)

t = AR n(Ag0) (Anp,gif R(n, fn) then ph else n)
h:= \if g((fn)::/) = 0 then 0 else g((fn):: /) — 1

Efficiency refinements in the Dialectica interpretation

L Uniform annotations

Extracted programs
Y3y R(X, ¥) = Vadi (|| = nAYm(m < n— R(n—m—1,1n)))

t o= (t,,t)
ty = A pR n(Agnil) (Anp,g(fn) :: ph)
t = AR n(Ag0) (Anp,gif R(n, fn) then ph else n)
h:= \if g((fn)::/) = 0 then 0 else g((fn):: /) — 1
Legend:
» t, — realiser for 3,

Efficiency refinements in the Dialectica interpretation

L Uniform annotations

Extracted programs
Y3y R(X, ¥) = Vadi (|| = nAYm(m < n— R(n—m—1,1n)))

t o= (t,,t)
ty == A aR n(Agnil) (Anp,g(fn) :: ph)
t_ = A nR n(Ag0) (Anp,gif R(n, in) then ph else n)
h:= X\/if g((fn)::1) = 0 then O else g((fn):: /) — 1
Legend:
» t, — realiser for 3,
» t_ — challenge for Vy

Efficiency refinements in the Dialectica interpretation

L Uniform annotations

Extracted programs
Y3y R(X, ¥) = Vadi (|| = nAYm(m < n— R(n—m—1,1n)))

t o= (t,,t)
ty == A aR n(Agnil) (Anp,g(fn) :: ph)
t_ = A nR n(Ag0) (Anp,gif R(n, in) then ph else n)
h:= X\/if g((fn)::1) = 0 then O else g((fn):: /) — 1
Legend:
» t, — realiser for 3,
» t_ — challenge for Vy
» f: N = N— realising function for V3,

Efficiency refinements in the Dialectica interpretation

L Uniform annotations

Extracted programs
Y3y R(X, ¥) = Vadi (|| = nAYm(m < n— R(n—m—1,1n)))

t o= (t,,t)
ty == A aR n(Agnil) (Anp,g(fn) :: ph)
t_ = A nR n(Ag0) (Anp,gif R(n, in) then ph else n)
h:= X\/if g((fn)::1) = 0 then O else g((fn):: /) — 1
Legend:
» t, — realiser for 3,
» t_ — challenge for Vy
» f: N = N— realising function for V3,
» g,h: L(N) = N — challenging functions for Vp,

Efficiency refinements in the Dialectica interpretation

L Uniform annotations

Computational uniformities
Y3y R(X, ¥) = Vadi (|| = nAYm(m < n— R(n—m—1,1n)))

t o= (t,,t)

ty = A pR n(Agnil) (Anp,g(fn) :: ph)

t_ = A nR n(Ag0) (Anp,gif R(n, in) then ph else n)
h:= X\/if g((fn)::1) = 0 then O else g((fn):: /) — 1

The functions g and h are computationally irrelevant!

Efficiency refinements in the Dialectica interpretation

L Uniform annotations

Computational uniformities
Y3y R(X, ¥) = Vadi (|| = nAYm(m < n— R(n—m—1,1n)))

t o= (t.,t)

ty = AraR nnil (A p(fn) :: p)
t_ = A nR n0 (Anpif R(n, fn) then p else n)

The functions g and h are computationally irrelevant!

Efficiency refinements in the Dialectica interpretation

L Uniform annotations

Computational uniformities
VA R(X,y) = Vadi ([l = nAV(m < n— R(n—m—1,1n)))

t = <t+7 t—>

ty == AraR nnil (A p(fn) :: p)

t_ = X nR n0 (Anpif R(n, fn) then p else n)
The functions g and h are computationally irrelevant!

Vm is computationally uniform.

Efficiency refinements in the Dialectica interpretation

L Uniform annotations

Uniform annotations

Definition
A proof is uniformly interpretable if for every needed case
distinction on a formula C it has no uniform annotations.

Efficiency refinements in the Dialectica interpretation

L Uniform annotations

Uniform annotations

Definition
A proof is uniformly interpretable if for every needed case
distinction on a formula C it has no uniform annotations.

Definition
A uniformly interpretable proof is computationally correct if
[rule T flags | restriction |
AxM v x ¢ UFVHIME,)
v x & FV({IM]})
MM | = | x ¢ UFV({IM)))
— | yeURV{IME, y)
—— | %,y ¢ UFVAMD; y)
e Y VAT
== o gFvIME)
y ¢ UFVHIML y)

Efficiency refinements in the Dialectica interpretation

LCounterexample marking

Avoiding recomputations
VA R(X,y) = Vadi ([l = nAV(m < n— R(n—m—1,1n)))

t o= (t,,t)

ty == AraR nnil (A p(fn) :: p)
t_ = X nR n0 (Anpif R(n, fn) then p else n)

t, and t_ are calculated using the same recursive scheme.

Efficiency refinements in the Dialectica interpretation

LCounterexample marking

Avoiding recomputations
VA R(X,y) = Vadi ([l = nAV(m < n— R(n—m—1,1n)))

t =)\f,an <n||, 0> ()\nnohpnlet m .= fn in
(m:: p;,if R(n, m) then p, else n))

t, and t_ are calculated using the same recursive scheme.

We can pack the two terms into a single computation.

Efficiency refinements in the Dialectica interpretation

LCounterexample marking

Optimising recursion
VA R(X,y) = Vadi ([l = nAV(m < n— R(n—m—1,1n)))

t = XrpRn(nil,0) (Anp, p.let m:= fnin
(m:: p;,if R(n, m) then p, else n))

Can we optimise further?
» positive computation is optimal

Efficiency refinements in the Dialectica interpretation

LCounterexample marking

Optimising recursion
VA R(X,y) = Vadi ([l = nAV(m < n— R(n—m—1,1n)))

t =)\f,an <n||, 0> ()\nJ)hpnIet m .= fn in
(m:: p;,if R(n, m) then p, else n))

Can we optimise further?
» positive computation is optimal
» negative computation searches for the last failure index

Efficiency refinements in the Dialectica interpretation

LCounterexample marking

Optimising recursion
VA R(X,y) = Vadi ([l = nAV(m < n— R(n—m—1,1n)))

t =)\f,an <n||, 0> ()\nJ)hpnIet m .= fn in
(m:: p;,if R(n, m) then p, else n))

Can we optimise further?
» positive computation is optimal
» negative computation searches for the last failure index
» it is sufficient to stop at the first failure index

Efficiency refinements in the Dialectica interpretation

LCounterexamp:;le marking

Optimising recursion
VA R(X,y) = Vadi ([l = nAV(m < n— R(n—m—1,1n)))

t = >\f7an <n||70 | 2 tt> (>\n7pl7pn>pb|et m:=fnin
(m:: py,if =pp V R(n, m) then p, » p, else n » ff))

Can we optimise further?
» positive computation is optimal
» negative computation searches for the last failure index
» it is sufficient to stop at the first failure index
» we mark successful counterexample candidates as n » ff

Efficiency refinements in the Dialectica interpretation

LCounterexamp:;le marking
Optimising recursion
VA R(X,y) = Vadi ([l = nAV(m < n— R(n—m—1,1n)))

t = >\f7an <n||70 | 2 tt> (>\n7pl7pn>pb|et m:=fnin
(m:: py,if =pp V R(n, m) then p, » p, else n » ff))

Can we optimise further?
» positive computation is optimal

v

negative computation searches for the last failure index

v

it is sufficient to stop at the first failure index

v

we mark successful counterexample candidates as n » ff
and skip further checks if they are redundant

v

Efficiency refinements in the Dialectica interpretation
I—Counterexample marking

Counterexample marking

» t» tt — we have no information about the validity of (| C;)

Xi

t

Efficiency refinements in the Dialectica interpretation
LCounterexample marking

Counterexample marking

» t» tt — we have no information about the validity of (| C;)
» t» ff — we have checked that —(C;|)},

Xi

t

Efficiency refinements in the Dialectica interpretation

LCounterexample marking

Counterexample marking

> t » tt — we have no information about the validity of (C;|)y’,
> t » ff — we have checked that —(C;)7,

Lemma

For any formula in NA¥ and let x : p*(C) be a variable. Then
there is aterm TS : p—(C) = p—(C) = p°(C) with
FV(TC) C FV(C) U {x}, such that for t; ,t, : p—(C)

Ai: (Cls — (CDs,

B: (C)X — a(m),

where t; ;= s> m;and s » m=TE L.

Efficiency refinements in the Dialectica interpretation

LConclusion

Conclusion and future work

The original Dialectica intepretation can be modified in a sound
way to produce better programs:
» programs are shorter (no code repetition, no redundant
code)

Efficiency refinements in the Dialectica interpretation

LConclusion

Conclusion and future work

The original Dialectica intepretation can be modified in a sound
way to produce better programs:
» programs are shorter (no code repetition, no redundant
code)

» better worst time complexity (no recomputation, no
redundant code)

Efficiency refinements in the Dialectica interpretation

LConclusion

Conclusion and future work

The original Dialectica intepretation can be modified in a sound
way to produce better programs:

» programs are shorter (no code repetition, no redundant
code)

» better worst time complexity (no recomputation, no
redundant code)

» better average time complexity (“abort” effect)

Efficiency refinements in the Dialectica interpretation

LConclusion

Conclusion and future work

The original Dialectica intepretation can be modified in a sound
way to produce better programs:

» programs are shorter (no code repetition, no redundant
code)

» better worst time complexity (no recomputation, no
redundant code)

» better average time complexity (“abort” effect)
Future work

Efficiency refinements in the Dialectica interpretation

LConclusion

Conclusion and future work

The original Dialectica intepretation can be modified in a sound
way to produce better programs:

» programs are shorter (no code repetition, no redundant
code)

» better worst time complexity (no recomputation, no
redundant code)

» better average time complexity (“abort” effect)
Future work
» implement optimizations in Minlog

Efficiency refinements in the Dialectica interpretation

LConclusion

Conclusion and future work

The original Dialectica intepretation can be modified in a sound
way to produce better programs:

» programs are shorter (no code repetition, no redundant
code)

» better worst time complexity (no recomputation, no
redundant code)

» better average time complexity (“abort” effect)
Future work

» implement optimizations in Minlog

» experiment with larger case studies

Efficiency refinements in the Dialectica interpretation

LConclusion

Conclusion and future work

The original Dialectica intepretation can be modified in a sound
way to produce better programs:

» programs are shorter (no code repetition, no redundant
code)

» better worst time complexity (no recomputation, no
redundant code)

» better average time complexity (“abort” effect)
Future work

» implement optimizations in Minlog

» experiment with larger case studies

» find other general improvements

Efficiency refinements in the Dialectica interpretation
I—Conclusion

Thank you

Thank you for your attention!

	Introduction
	Quasi-linear extraction
	Uniform annotations
	Counterexample marking
	Conclusion

