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L Introduction

Program extraction

From constructive proofs:
» Curry-Howard correspondence
» proofs as functional programs with verification
» modified realisability: proof — program + certificate
Why would we want to extract from non-constructive proofs?
» sometimes they are easier than constructive ones
» undecidable case distinctions
» sometimes we have no hope for an efficient algorithm
» NP-complete problems
» sometimes provide more interesting solutions
» use of continuations and accumulating parameters
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L Introduction

Godel’s Dialectica interpretation

» Formulas A are problems

» Formulas specify the type of the solution t : 7 (A)

» Solutions are challenged by terms y : 77 (A)

» Translations specify when t is a solution of A for a
challenge y (JA[})

» Proposed by Gédel (1958)

» Motivation: interpret classical arithmetic in a quantifier-free
constructive system with higher types.
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Efficiency problems

1. every object term used in the proof is copied multiple times
» terms appear in V elimination
» copied once for every occurrence of the quantified variable
» reason: substitution is used on the meta-level
2. some computations are only used for verification
» example: is the extracted function invertible?
» to assert this we may need to compute its inverse
» but the extracted program need not compute it
3. same conditions are checked multiple times
» assumptions can be used more than once in a proof
» Dialectica combines two counterexamples into one
» if one of them is verified, no need to check further
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Efficiency improvements

1. let definitions instead of substitutions
» (AxS)tinstead of s[x := ]
» a proof cut should be translated to an application
» programmer’s slang: local variables
2. annotate some parameters as computationally uniform
» introduced by Berger, adapted by Hernest
» automatic annotation (Ratiu & Schwichtenberg)
» programmer’s slang: dead code cleanup
3. remember counterexample checks
» annotate every counterexample with a boolean flag

» do not compute new counterexamples after one is found
» programmers slang: memoization
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Exponential example
Consider a proof of totality:

VX7yE|z(z - 2X(X + }/))

Extracted programs:
» Dialectica:

f0,y) =y
fx+1,y)=Ffx,y+1)+f(x,y+1)

» Modified realisability:

f(o’y) =Yy
fix+1,y) = (Az99(2))(F(x, ¥y +1))(A22 + 2)
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Avoid repetition
Definition contexts
E = [°|(E">7¢) | (wE7)™7,
E[tF] := E[o:=p|[[] := 1]

v

Let P be a proof of A from assumptions C;

Split extracted terms in two parts

Binding term (context) [P] : 0 (A) = ©
Context-dependent terms [P]" : o (A), [P]; : e~ (C)
Combine at the end:

{Pl = IPIKIPI" IPT7 - )]

v

v

v

v
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Quasi-linear extraction
In theory:

Theorem
Let P be a proof of A. Then the extracted program {|P} " is a
witness of A and size({|73|}+) = O(size(P) - msl(P)3?).

In practice:

R:=\,let x := ygin )\ let f; .= sin f;y7, where

S:=Rxl(AAplet xp, :=pinty),

o :=Aplety =y inlety; == yiny;,

= Apletfy .= (N, letz:=ysinlet ys :=z+zin y,) in
lety =yoinletys ==y +1inlet zy := xpy5 in foz.
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LQuasi—linear extraction

Affine reductions

Let #«(t) denote the number of free occurrences of x in t.
Consider

(AxS)t —a s[x:=1], if #x(t) <1

Theorem
g IS Strongly normalising and confluent.

Exponential example after affine reductions:

R:= MR x(A\yy) (Aedpry(A2z + 2)(p(y + 1))
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Recursive uniformisation

Let R C N x N be recursive with dom(R) = N.
Then there is a recursive function uniformising R.

We consider initial approximations of a uniformising function.

Vi 3yR(X, ) = VoI (|1 = nAYm(m < n— R(n—m—1,In)))
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Extracted programs
Y3y R(X, ¥) = Vadi (|| = nAYm(m < n— R(n—m—1,1n)))

t o= (t,,t)
ty == A aR n(Agnil) (Anp,g(fn) :: ph)
t_ = A nR n(Ag0) (Anp,gif R(n, in) then ph else n)
h:= X\/if g((fn)::1) = 0 then O else g((fn):: /) — 1
Legend:
» t, — realiser for 3,
» t_ — challenge for Vy
» f: N = N— realising function for V3,
» g,h: L(N) = N — challenging functions for Vp,
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Computational uniformities
VA R(X,y) = Vadi ([l = nAV(m < n— R(n—m—1,1n)))

t = <t+7 t—>

ty == AraR nnil (A p(fn) :: p)

t_ = X nR n0 (Anpif R(n, fn) then p else n)
The functions g and h are computationally irrelevant!

Vm is computationally uniform.
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Uniform annotations

Definition
A proof is uniformly interpretable if for every needed case
distinction on a formula C it has no uniform annotations.

Definition
A uniformly interpretable proof is computationally correct if
[rule T flags | restriction |
AxM v x ¢ UFVHIME,)
v x & FV({IM]})
MM | = | x ¢ UFV({IM)))
— | yeURV{IME, y)
—— | %,y ¢ UFVAMD; y)
e Y VAT
== o gFvIME)
y ¢ UFVHIML y)
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Avoiding recomputations
VA R(X,y) = Vadi ([l = nAV(m < n— R(n—m—1,1n)))

t = )\f,an <n||, 0> ()\nnohpnlet m .= fn in
(m:: p;,if R(n, m) then p, else n))

t, and t_ are calculated using the same recursive scheme.

We can pack the two terms into a single computation.
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LCounterexamp:;le marking
Optimising recursion
VA R(X,y) = Vadi ([l = nAV(m < n— R(n—m—1,1n)))

t = >\f7an <n||70 | 2 tt> (>\n7pl7pn>pb|et m:=fnin
(m:: py,if =pp V R(n, m) then p, » p, else n » ff))

Can we optimise further?
» positive computation is optimal

v

negative computation searches for the last failure index

v

it is sufficient to stop at the first failure index

v

we mark successful counterexample candidates as n » ff
and skip further checks if they are redundant

v
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LCounterexample marking

Counterexample marking

> t » tt — we have no information about the validity of ( C;|)y’,
> t » ff — we have checked that —(C;)7,

Lemma

For any formula in NA¥ and let x : p*(C) be a variable. Then
there is aterm TS : p—(C) = p—(C) = p°(C) with
FV(TC) C FV(C) U {x}, such that for t; ,t, : p—(C)

Ai: (Cls — (CDs,

B: (C)X — a(m),

where t; ;= s> m;and s » m=TE L.
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LConclusion

Conclusion and future work

The original Dialectica intepretation can be modified in a sound
way to produce better programs:

» programs are shorter (no code repetition, no redundant
code)

» better worst time complexity (no recomputation, no
redundant code)

» better average time complexity (“abort” effect)
Future work

» implement optimizations in Minlog

» experiment with larger case studies

» find other general improvements
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Thank you

Thank you for your attention!
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