
Efficiency refinements in the Dialectica interpretation

Efficiency refinements in the Dialectica
interpretation

Trifon Trifonov

Faculty of Mathematics and Informatics, Sofia University
Supported by the European Social Fund within project

BG051PO001-3.3.04/28.08.2009.

Computability in Europe 2011
Sofia, 29.06.2011

Efficiency refinements in the Dialectica interpretation

Introduction

Program extraction

From constructive proofs:
I Curry-Howard correspondence
I proofs as functional programs with verification
I modified realisability: proof→ program + certificate

Why would we want to extract from non-constructive proofs?
I sometimes they are easier than constructive ones

I undecidable case distinctions
I sometimes we have no hope for an efficient algorithm

I NP-complete problems
I sometimes provide more interesting solutions

I use of continuations and accumulating parameters

Efficiency refinements in the Dialectica interpretation

Introduction

Program extraction

From constructive proofs:
I Curry-Howard correspondence
I proofs as functional programs with verification
I modified realisability: proof→ program + certificate

Why would we want to extract from non-constructive proofs?
I sometimes they are easier than constructive ones

I undecidable case distinctions
I sometimes we have no hope for an efficient algorithm

I NP-complete problems
I sometimes provide more interesting solutions

I use of continuations and accumulating parameters

Efficiency refinements in the Dialectica interpretation

Introduction

Program extraction

From constructive proofs:
I Curry-Howard correspondence
I proofs as functional programs with verification
I modified realisability: proof→ program + certificate

Why would we want to extract from non-constructive proofs?
I sometimes they are easier than constructive ones

I undecidable case distinctions
I sometimes we have no hope for an efficient algorithm

I NP-complete problems
I sometimes provide more interesting solutions

I use of continuations and accumulating parameters

Efficiency refinements in the Dialectica interpretation

Introduction

Program extraction

From constructive proofs:
I Curry-Howard correspondence
I proofs as functional programs with verification
I modified realisability: proof→ program + certificate

Why would we want to extract from non-constructive proofs?
I sometimes they are easier than constructive ones

I undecidable case distinctions
I sometimes we have no hope for an efficient algorithm

I NP-complete problems
I sometimes provide more interesting solutions

I use of continuations and accumulating parameters

Efficiency refinements in the Dialectica interpretation

Introduction

Program extraction

From constructive proofs:
I Curry-Howard correspondence
I proofs as functional programs with verification
I modified realisability: proof→ program + certificate

Why would we want to extract from non-constructive proofs?
I sometimes they are easier than constructive ones

I undecidable case distinctions
I sometimes we have no hope for an efficient algorithm

I NP-complete problems
I sometimes provide more interesting solutions

I use of continuations and accumulating parameters

Efficiency refinements in the Dialectica interpretation

Introduction

Program extraction

From constructive proofs:
I Curry-Howard correspondence
I proofs as functional programs with verification
I modified realisability: proof→ program + certificate

Why would we want to extract from non-constructive proofs?
I sometimes they are easier than constructive ones

I undecidable case distinctions
I sometimes we have no hope for an efficient algorithm

I NP-complete problems
I sometimes provide more interesting solutions

I use of continuations and accumulating parameters

Efficiency refinements in the Dialectica interpretation

Introduction

Program extraction

From constructive proofs:
I Curry-Howard correspondence
I proofs as functional programs with verification
I modified realisability: proof→ program + certificate

Why would we want to extract from non-constructive proofs?
I sometimes they are easier than constructive ones

I undecidable case distinctions
I sometimes we have no hope for an efficient algorithm

I NP-complete problems
I sometimes provide more interesting solutions

I use of continuations and accumulating parameters

Efficiency refinements in the Dialectica interpretation

Introduction

Program extraction

From constructive proofs:
I Curry-Howard correspondence
I proofs as functional programs with verification
I modified realisability: proof→ program + certificate

Why would we want to extract from non-constructive proofs?
I sometimes they are easier than constructive ones

I undecidable case distinctions
I sometimes we have no hope for an efficient algorithm

I NP-complete problems
I sometimes provide more interesting solutions

I use of continuations and accumulating parameters

Efficiency refinements in the Dialectica interpretation

Introduction

Program extraction

From constructive proofs:
I Curry-Howard correspondence
I proofs as functional programs with verification
I modified realisability: proof→ program + certificate

Why would we want to extract from non-constructive proofs?
I sometimes they are easier than constructive ones

I undecidable case distinctions
I sometimes we have no hope for an efficient algorithm

I NP-complete problems
I sometimes provide more interesting solutions

I use of continuations and accumulating parameters

Efficiency refinements in the Dialectica interpretation

Introduction

Program extraction

From constructive proofs:
I Curry-Howard correspondence
I proofs as functional programs with verification
I modified realisability: proof→ program + certificate

Why would we want to extract from non-constructive proofs?
I sometimes they are easier than constructive ones

I undecidable case distinctions
I sometimes we have no hope for an efficient algorithm

I NP-complete problems
I sometimes provide more interesting solutions

I use of continuations and accumulating parameters

Efficiency refinements in the Dialectica interpretation

Introduction

Gödel’s Dialectica interpretation

I Formulas A are problems
I Formulas specify the type of the solution t : τ+(A)
I Solutions are challenged by terms y : τ−(A)
I Translations specify when t is a solution of A for a

challenge y (|A|ty)
I Proposed by Gödel (1958)
I Motivation: interpret classical arithmetic in a quantifier-free

constructive system with higher types.

Efficiency refinements in the Dialectica interpretation

Introduction

Gödel’s Dialectica interpretation

I Formulas A are problems
I Formulas specify the type of the solution t : τ+(A)
I Solutions are challenged by terms y : τ−(A)
I Translations specify when t is a solution of A for a

challenge y (|A|ty)
I Proposed by Gödel (1958)
I Motivation: interpret classical arithmetic in a quantifier-free

constructive system with higher types.

Efficiency refinements in the Dialectica interpretation

Introduction

Gödel’s Dialectica interpretation

I Formulas A are problems
I Formulas specify the type of the solution t : τ+(A)
I Solutions are challenged by terms y : τ−(A)
I Translations specify when t is a solution of A for a

challenge y (|A|ty)
I Proposed by Gödel (1958)
I Motivation: interpret classical arithmetic in a quantifier-free

constructive system with higher types.

Efficiency refinements in the Dialectica interpretation

Introduction

Gödel’s Dialectica interpretation

I Formulas A are problems
I Formulas specify the type of the solution t : τ+(A)
I Solutions are challenged by terms y : τ−(A)
I Translations specify when t is a solution of A for a

challenge y (|A|ty)
I Proposed by Gödel (1958)
I Motivation: interpret classical arithmetic in a quantifier-free

constructive system with higher types.

Efficiency refinements in the Dialectica interpretation

Introduction

Gödel’s Dialectica interpretation

I Formulas A are problems
I Formulas specify the type of the solution t : τ+(A)
I Solutions are challenged by terms y : τ−(A)
I Translations specify when t is a solution of A for a

challenge y (|A|ty)
I Proposed by Gödel (1958)
I Motivation: interpret classical arithmetic in a quantifier-free

constructive system with higher types.

Efficiency refinements in the Dialectica interpretation

Introduction

Gödel’s Dialectica interpretation

I Formulas A are problems
I Formulas specify the type of the solution t : τ+(A)
I Solutions are challenged by terms y : τ−(A)
I Translations specify when t is a solution of A for a

challenge y (|A|ty)
I Proposed by Gödel (1958)
I Motivation: interpret classical arithmetic in a quantifier-free

constructive system with higher types.

Efficiency refinements in the Dialectica interpretation

Introduction

Efficiency problems

1. every object term used in the proof is copied multiple times
I terms appear in ∀ elimination
I copied once for every occurrence of the quantified variable
I reason: substitution is used on the meta-level

2. some computations are only used for verification
I example: is the extracted function invertible?
I to assert this we may need to compute its inverse
I but the extracted program need not compute it

3. same conditions are checked multiple times
I assumptions can be used more than once in a proof
I Dialectica combines two counterexamples into one
I if one of them is verified, no need to check further

Efficiency refinements in the Dialectica interpretation

Introduction

Efficiency problems

1. every object term used in the proof is copied multiple times
I terms appear in ∀ elimination
I copied once for every occurrence of the quantified variable
I reason: substitution is used on the meta-level

2. some computations are only used for verification
I example: is the extracted function invertible?
I to assert this we may need to compute its inverse
I but the extracted program need not compute it

3. same conditions are checked multiple times
I assumptions can be used more than once in a proof
I Dialectica combines two counterexamples into one
I if one of them is verified, no need to check further

Efficiency refinements in the Dialectica interpretation

Introduction

Efficiency problems

1. every object term used in the proof is copied multiple times
I terms appear in ∀ elimination
I copied once for every occurrence of the quantified variable
I reason: substitution is used on the meta-level

2. some computations are only used for verification
I example: is the extracted function invertible?
I to assert this we may need to compute its inverse
I but the extracted program need not compute it

3. same conditions are checked multiple times
I assumptions can be used more than once in a proof
I Dialectica combines two counterexamples into one
I if one of them is verified, no need to check further

Efficiency refinements in the Dialectica interpretation

Introduction

Efficiency improvements

1. let definitions instead of substitutions
I (λxs)t instead of s [x := t]
I a proof cut should be translated to an application
I programmer’s slang: local variables

2. annotate some parameters as computationally uniform
I introduced by Berger, adapted by Hernest
I automatic annotation (Ratiu & Schwichtenberg)
I programmer’s slang: dead code cleanup

3. remember counterexample checks
I annotate every counterexample with a boolean flag
I do not compute new counterexamples after one is found
I programmers slang: memoization

Efficiency refinements in the Dialectica interpretation

Introduction

Efficiency improvements

1. let definitions instead of substitutions
I (λxs)t instead of s [x := t]
I a proof cut should be translated to an application
I programmer’s slang: local variables

2. annotate some parameters as computationally uniform
I introduced by Berger, adapted by Hernest
I automatic annotation (Ratiu & Schwichtenberg)
I programmer’s slang: dead code cleanup

3. remember counterexample checks
I annotate every counterexample with a boolean flag
I do not compute new counterexamples after one is found
I programmers slang: memoization

Efficiency refinements in the Dialectica interpretation

Introduction

Efficiency improvements

1. let definitions instead of substitutions
I (λxs)t instead of s [x := t]
I a proof cut should be translated to an application
I programmer’s slang: local variables

2. annotate some parameters as computationally uniform
I introduced by Berger, adapted by Hernest
I automatic annotation (Ratiu & Schwichtenberg)
I programmer’s slang: dead code cleanup

3. remember counterexample checks
I annotate every counterexample with a boolean flag
I do not compute new counterexamples after one is found
I programmers slang: memoization

Efficiency refinements in the Dialectica interpretation

Quasi-linear extraction

Exponential example
Consider a proof of totality:

∀x ,y∃z
(
z = 2x(x + y)

)
Extracted programs:

I Dialectica:

f (0, y) = y
f (x + 1, y) = f (x , y + 1) + f (x , y + 1)

I Modified realisability:

f (0, y) = y
f (x + 1, y) = (λz,gg(z))(f (x , y + 1))(λzz + z)

Efficiency refinements in the Dialectica interpretation

Quasi-linear extraction

Exponential example
Consider a proof of totality:

∀x ,y∃z
(
z = 2x(x + y)

)
Extracted programs:

I Dialectica:

f (0, y) = y
f (x + 1, y) = f (x , y + 1) + f (x , y + 1)

I Modified realisability:

f (0, y) = y
f (x + 1, y) = (λz,gg(z))(f (x , y + 1))(λzz + z)

Efficiency refinements in the Dialectica interpretation

Quasi-linear extraction

Exponential example
Consider a proof of totality:

∀x ,y∃z
(
z = 2x(x + y)

)
Extracted programs:

I Dialectica:

f (0, y) = y
f (x + 1, y) = f (x , y + 1) + f (x , y + 1)

I Modified realisability:

f (0, y) = y
f (x + 1, y) = (λz,gg(z))(f (x , y + 1))(λzz + z)

Efficiency refinements in the Dialectica interpretation

Quasi-linear extraction

Avoid repetition
Definition contexts

E ::= []� | (Eρ⇒σtρ)σ | (λxρEσ)ρ⇒σ,

E [tρ] := E [� := ρ] [[] := t]

I Let P be a proof of A from assumptions Ci

I Split extracted terms in two parts
I Binding term (context) [[P]] : σ−(A)⇒ �
I Context-dependent terms [[P]]+ : σ+(A), [[P]]−i : σ−(Ci)

I Combine at the end:

{|P|} := [[P]][
〈
[[P]]+, [[P]]−i , . . .

〉
]

Efficiency refinements in the Dialectica interpretation

Quasi-linear extraction

Avoid repetition
Definition contexts

E ::= []� | (Eρ⇒σtρ)σ | (λxρEσ)ρ⇒σ,

E [tρ] := E [� := ρ] [[] := t]

I Let P be a proof of A from assumptions Ci

I Split extracted terms in two parts
I Binding term (context) [[P]] : σ−(A)⇒ �
I Context-dependent terms [[P]]+ : σ+(A), [[P]]−i : σ−(Ci)

I Combine at the end:

{|P|} := [[P]][
〈
[[P]]+, [[P]]−i , . . .

〉
]

Efficiency refinements in the Dialectica interpretation

Quasi-linear extraction

Avoid repetition
Definition contexts

E ::= []� | (Eρ⇒σtρ)σ | (λxρEσ)ρ⇒σ,

E [tρ] := E [� := ρ] [[] := t]

I Let P be a proof of A from assumptions Ci

I Split extracted terms in two parts
I Binding term (context) [[P]] : σ−(A)⇒ �
I Context-dependent terms [[P]]+ : σ+(A), [[P]]−i : σ−(Ci)

I Combine at the end:

{|P|} := [[P]][
〈
[[P]]+, [[P]]−i , . . .

〉
]

Efficiency refinements in the Dialectica interpretation

Quasi-linear extraction

Avoid repetition
Definition contexts

E ::= []� | (Eρ⇒σtρ)σ | (λxρEσ)ρ⇒σ,

E [tρ] := E [� := ρ] [[] := t]

I Let P be a proof of A from assumptions Ci

I Split extracted terms in two parts
I Binding term (context) [[P]] : σ−(A)⇒ �
I Context-dependent terms [[P]]+ : σ+(A), [[P]]−i : σ−(Ci)

I Combine at the end:

{|P|} := [[P]][
〈
[[P]]+, [[P]]−i , . . .

〉
]

Efficiency refinements in the Dialectica interpretation

Quasi-linear extraction

Avoid repetition
Definition contexts

E ::= []� | (Eρ⇒σtρ)σ | (λxρEσ)ρ⇒σ,

E [tρ] := E [� := ρ] [[] := t]

I Let P be a proof of A from assumptions Ci

I Split extracted terms in two parts
I Binding term (context) [[P]] : σ−(A)⇒ �
I Context-dependent terms [[P]]+ : σ+(A), [[P]]−i : σ−(Ci)

I Combine at the end:

{|P|} := [[P]][
〈
[[P]]+, [[P]]−i , . . .

〉
]

Efficiency refinements in the Dialectica interpretation

Quasi-linear extraction

Avoid repetition
Definition contexts

E ::= []� | (Eρ⇒σtρ)σ | (λxρEσ)ρ⇒σ,

E [tρ] := E [� := ρ] [[] := t]

I Let P be a proof of A from assumptions Ci

I Split extracted terms in two parts
I Binding term (context) [[P]] : σ−(A)⇒ �
I Context-dependent terms [[P]]+ : σ+(A), [[P]]−i : σ−(Ci)

I Combine at the end:

{|P|} := [[P]][
〈
[[P]]+, [[P]]−i , . . .

〉
]

Efficiency refinements in the Dialectica interpretation

Quasi-linear extraction

Quasi-linear extraction
In theory:

Theorem
Let P be a proof of A. Then the extracted program {|P|}+ is a
witness of A and size({|P|}+) = O(size(P) ·msl(P)2).
In practice:

R := λy6 let x := y6 in λy7 let f1 := s in f1y7, where
s := R x t0 (λxλplet xp := p in t1),
t0 := λy0 let y := y0 in let y1 := y in y1,

t1 := λy2 let f0 := (λy3 let z := y3 in let y4 := z + z in y4) in
let y := y2 in let y5 := y + 1 in let z0 := xpy5 in f0z0.

Efficiency refinements in the Dialectica interpretation

Quasi-linear extraction

Quasi-linear extraction
In theory:

Theorem
Let P be a proof of A. Then the extracted program {|P|}+ is a
witness of A and size({|P|}+) = O(size(P) ·msl(P)2).
In practice:

R := λy6 let x := y6 in λy7 let f1 := s in f1y7, where
s := R x t0 (λxλplet xp := p in t1),
t0 := λy0 let y := y0 in let y1 := y in y1,

t1 := λy2 let f0 := (λy3 let z := y3 in let y4 := z + z in y4) in
let y := y2 in let y5 := y + 1 in let z0 := xpy5 in f0z0.

Efficiency refinements in the Dialectica interpretation

Quasi-linear extraction

Quasi-linear extraction
In theory:

Theorem
Let P be a proof of A. Then the extracted program {|P|}+ is a
witness of A and size({|P|}+) = O(size(P) ·msl(P)2).
In practice:

R := λy6 let x := y6 in λy7 let f1 := s in f1y7, where
s := R x t0 (λxλplet xp := p in t1),
t0 := λy0 let y := y0 in let y1 := y in y1,

t1 := λy2 let f0 := (λy3 let z := y3 in let y4 := z + z in y4) in
let y := y2 in let y5 := y + 1 in let z0 := xpy5 in f0z0.

Efficiency refinements in the Dialectica interpretation

Quasi-linear extraction

Quasi-linear extraction
In theory:

Theorem
Let P be a proof of A. Then the extracted program {|P|}+ is a
witness of A and size({|P|}+) = O(size(P) ·msl(P)2).
In practice:

R := λy6 let x := y6 in λy7 let f1 := s in f1y7, where
s := R x t0 (λxλplet xp := p in t1),
t0 := λy0 let y := y0 in let y1 := y in y1,

t1 := λy2 let f0 := (λy3 let z := y3 in let y4 := z + z in y4) in
let y := y2 in let y5 := y + 1 in let z0 := xpy5 in f0z0.

Efficiency refinements in the Dialectica interpretation

Quasi-linear extraction

Affine reductions

Let #x(t) denote the number of free occurrences of x in t .
Consider

(λxs)t 7→a s [x := t] , if #x(t) ≤ 1

Theorem
7→a is strongly normalising and confluent.
Exponential example after affine reductions:

R := λxR x (λyy)
(
λxλpλy (λzz + z)(p(y + 1))

)

Efficiency refinements in the Dialectica interpretation

Quasi-linear extraction

Affine reductions

Let #x(t) denote the number of free occurrences of x in t .
Consider

(λxs)t 7→a s [x := t] , if #x(t) ≤ 1

Theorem
7→a is strongly normalising and confluent.
Exponential example after affine reductions:

R := λxR x (λyy)
(
λxλpλy (λzz + z)(p(y + 1))

)

Efficiency refinements in the Dialectica interpretation

Quasi-linear extraction

Affine reductions

Let #x(t) denote the number of free occurrences of x in t .
Consider

(λxs)t 7→a s [x := t] , if #x(t) ≤ 1

Theorem
7→a is strongly normalising and confluent.
Exponential example after affine reductions:

R := λxR x (λyy)
(
λxλpλy (λzz + z)(p(y + 1))

)

Efficiency refinements in the Dialectica interpretation

Uniform annotations

Recursive uniformisation

Let R ⊆ N× N be recursive with dom(R) = N.
Then there is a recursive function uniformising R.

We consider initial approximations of a uniformising function.

∀x∃yR(x , y)→ ∀n∃l
(
|l | = n ∧ ∀m(m < n→ R(n −m − 1, lm))

)

Efficiency refinements in the Dialectica interpretation

Uniform annotations

Recursive uniformisation

Let R ⊆ N× N be recursive with dom(R) = N.
Then there is a recursive function uniformising R.

We consider initial approximations of a uniformising function.

∀x∃yR(x , y)→ ∀n∃l
(
|l | = n ∧ ∀m(m < n→ R(n −m − 1, lm))

)

Efficiency refinements in the Dialectica interpretation

Uniform annotations

Extracted programs
∀x ∃̃yR(x , y)→ ∀n∃̃l

(
|l | = n ∧̃ ∀m(m < n→ R(n −m − 1, lm))

)
t := 〈t+, t−〉
t+ := λf ,nRn (λgnil) (λn,p,g(fn) :: ph)
t− := λf ,nRn (λg0) (λn,p,g if R(n, fn) then ph else n)
h := λl if g((fn) :: l) = 0 then 0 else g((fn) :: l)− 1

Efficiency refinements in the Dialectica interpretation

Uniform annotations

Extracted programs
∀x ∃̃yR(x , y)→ ∀n∃̃l

(
|l | = n ∧̃ ∀m(m < n→ R(n −m − 1, lm))

)
t := 〈t+, t−〉
t+ := λf ,nRn (λgnil) (λn,p,g(fn) :: ph)
t− := λf ,nRn (λg0) (λn,p,g if R(n, fn) then ph else n)
h := λl if g((fn) :: l) = 0 then 0 else g((fn) :: l)− 1

Legend:
I t+ — realiser for ∃̃l

I t− — challenge for ∀x

I f : N⇒ N — realising function for ∀x ∃̃y

I g,h : L(N)⇒ N — challenging functions for ∀m

Efficiency refinements in the Dialectica interpretation

Uniform annotations

Extracted programs
∀x ∃̃yR(x , y)→ ∀n∃̃l

(
|l | = n ∧̃ ∀m(m < n→ R(n −m − 1, lm))

)
t := 〈t+, t−〉
t+ := λf ,nRn (λgnil) (λn,p,g(fn) :: ph)
t− := λf ,nRn (λg0) (λn,p,g if R(n, fn) then ph else n)
h := λl if g((fn) :: l) = 0 then 0 else g((fn) :: l)− 1

Legend:
I t+ — realiser for ∃̃l

I t− — challenge for ∀x

I f : N⇒ N — realising function for ∀x ∃̃y

I g,h : L(N)⇒ N — challenging functions for ∀m

Efficiency refinements in the Dialectica interpretation

Uniform annotations

Extracted programs
∀x ∃̃yR(x , y)→ ∀n∃̃l

(
|l | = n ∧̃ ∀m(m < n→ R(n −m − 1, lm))

)
t := 〈t+, t−〉
t+ := λf ,nRn (λgnil) (λn,p,g(fn) :: ph)
t− := λf ,nRn (λg0) (λn,p,g if R(n, fn) then ph else n)
h := λl if g((fn) :: l) = 0 then 0 else g((fn) :: l)− 1

Legend:
I t+ — realiser for ∃̃l

I t− — challenge for ∀x

I f : N⇒ N — realising function for ∀x ∃̃y

I g,h : L(N)⇒ N — challenging functions for ∀m

Efficiency refinements in the Dialectica interpretation

Uniform annotations

Extracted programs
∀x ∃̃yR(x , y)→ ∀n∃̃l

(
|l | = n ∧̃ ∀m(m < n→ R(n −m − 1, lm))

)
t := 〈t+, t−〉
t+ := λf ,nRn (λgnil) (λn,p,g(fn) :: ph)
t− := λf ,nRn (λg0) (λn,p,g if R(n, fn) then ph else n)
h := λl if g((fn) :: l) = 0 then 0 else g((fn) :: l)− 1

Legend:
I t+ — realiser for ∃̃l

I t− — challenge for ∀x

I f : N⇒ N — realising function for ∀x ∃̃y

I g,h : L(N)⇒ N — challenging functions for ∀m

Efficiency refinements in the Dialectica interpretation

Uniform annotations

Computational uniformities
∀x ∃̃yR(x , y)→ ∀n∃̃l

(
|l | = n ∧̃ ∀m(m < n→ R(n −m − 1, lm))

)
t := 〈t+, t−〉
t+ := λf ,nRn (λgnil) (λn,p,g(fn) :: ph)
t− := λf ,nRn (λg0) (λn,p,g if R(n, fn) then ph else n)
h := λl if g((fn) :: l) = 0 then 0 else g((fn) :: l)− 1

The functions g and h are computationally irrelevant!

Efficiency refinements in the Dialectica interpretation

Uniform annotations

Computational uniformities
∀x ∃̃yR(x , y)→ ∀n∃̃l

(
|l | = n ∧̃ ∀m(m < n→ R(n −m − 1, lm))

)
t := 〈t+, t−〉
t+ := λf ,nRn nil (λn,p(fn) :: p)
t− := λf ,nRn 0 (λn,pif R(n, fn) then p else n)

The functions g and h are computationally irrelevant!

Efficiency refinements in the Dialectica interpretation

Uniform annotations

Computational uniformities
∀x ∃̃yR(x , y)→ ∀n∃̃l

(
|l | = n ∧̃ ∀U

m(m < n→ R(n −m − 1, lm))
)

t := 〈t+, t−〉
t+ := λf ,nRn nil (λn,p(fn) :: p)
t− := λf ,nRn 0 (λn,pif R(n, fn) then p else n)

The functions g and h are computationally irrelevant!

∀m is computationally uniform.

Efficiency refinements in the Dialectica interpretation

Uniform annotations

Uniform annotations

Definition
A proof is uniformly interpretable if for every needed case
distinction on a formula C it has no uniform annotations.

Definition
A uniformly interpretable proof is computationally correct if

rule flags restriction

λx M
−
∀ x /∈

⋃
FV({|M|}−i)

±
∀ x /∈ FV({|M|})

λu0 M
−−−−→ x0 /∈

⋃
FV({|M|}−i)

−−−−→ y /∈
⋃

FV({|M|}−i y)
− −−−−−→ x0, y /∈

⋃
FV({|M|}−i y)

±−−−→ x0 /∈ FV({|M|})
± −−−−−→ x0 /∈ FV({|M|})

y /∈
⋃

FV({|M|}−i y)

Efficiency refinements in the Dialectica interpretation

Uniform annotations

Uniform annotations

Definition
A proof is uniformly interpretable if for every needed case
distinction on a formula C it has no uniform annotations.

Definition
A uniformly interpretable proof is computationally correct if

rule flags restriction

λx M
−
∀ x /∈

⋃
FV({|M|}−i)

±
∀ x /∈ FV({|M|})

λu0 M
−−−−→ x0 /∈

⋃
FV({|M|}−i)

−−−−→ y /∈
⋃

FV({|M|}−i y)
− −−−−−→ x0, y /∈

⋃
FV({|M|}−i y)

±−−−→ x0 /∈ FV({|M|})
± −−−−−→ x0 /∈ FV({|M|})

y /∈
⋃

FV({|M|}−i y)

Efficiency refinements in the Dialectica interpretation

Counterexample marking

Avoiding recomputations
∀x ∃̃yR(x , y)→ ∀n∃̃l

(
|l | = n ∧̃ ∀U

m(m < n→ R(n −m − 1, lm))
)

t := 〈t+, t−〉
t+ := λf ,nRn nil (λn,p(fn) :: p)
t− := λf ,nRn 0 (λn,pif R(n, fn) then p else n)

t+ and t− are calculated using the same recursive scheme.

Efficiency refinements in the Dialectica interpretation

Counterexample marking

Avoiding recomputations
∀x ∃̃yR(x , y)→ ∀n∃̃l

(
|l | = n ∧̃ ∀U

m(m < n→ R(n −m − 1, lm))
)

t := λf ,nRn 〈nil,0〉 (λn,pl ,pn let m := fn in
〈m :: pl , if R(n,m) then pn else n〉)

t+ and t− are calculated using the same recursive scheme.

We can pack the two terms into a single computation.

Efficiency refinements in the Dialectica interpretation

Counterexample marking

Optimising recursion
∀x ∃̃yR(x , y)→ ∀n∃̃l

(
|l | = n ∧̃ ∀U

m(m < n→ R(n −m − 1, lm))
)

t := λf ,nRn 〈nil,0〉 (λn,pl ,pn let m := fn in
〈m :: pl , if R(n,m) then pn else n〉)

Can we optimise further?
I positive computation is optimal
I negative computation searches for the last failure index
I it is sufficient to stop at the first failure index
I we mark successful counterexample candidates as n I ff
I and skip further checks if they are redundant

Efficiency refinements in the Dialectica interpretation

Counterexample marking

Optimising recursion
∀x ∃̃yR(x , y)→ ∀n∃̃l

(
|l | = n ∧̃ ∀U

m(m < n→ R(n −m − 1, lm))
)

t := λf ,nRn 〈nil,0〉 (λn,pl ,pn let m := fn in
〈m :: pl , if R(n,m) then pn else n〉)

Can we optimise further?
I positive computation is optimal
I negative computation searches for the last failure index
I it is sufficient to stop at the first failure index
I we mark successful counterexample candidates as n I ff
I and skip further checks if they are redundant

Efficiency refinements in the Dialectica interpretation

Counterexample marking

Optimising recursion
∀x ∃̃yR(x , y)→ ∀n∃̃l

(
|l | = n ∧̃ ∀U

m(m < n→ R(n −m − 1, lm))
)

t := λf ,nRn 〈nil,0〉 (λn,pl ,pn let m := fn in
〈m :: pl , if R(n,m) then pn else n〉)

Can we optimise further?
I positive computation is optimal
I negative computation searches for the last failure index
I it is sufficient to stop at the first failure index
I we mark successful counterexample candidates as n I ff
I and skip further checks if they are redundant

Efficiency refinements in the Dialectica interpretation

Counterexample marking

Optimising recursion
∀x ∃̃yR(x , y)→ ∀n∃̃l

(
|l | = n ∧̃ ∀U

m(m < n→ R(n −m − 1, lm))
)

t := λf ,nRn 〈nil,0 I tt〉
(
λn,pl ,pnIpb let m := fn in

〈m :: pl , if ¬pb ∨ R(n,m) then pn I pb else n I ff〉
)

Can we optimise further?
I positive computation is optimal
I negative computation searches for the last failure index
I it is sufficient to stop at the first failure index
I we mark successful counterexample candidates as n I ff
I and skip further checks if they are redundant

Efficiency refinements in the Dialectica interpretation

Counterexample marking

Optimising recursion
∀x ∃̃yR(x , y)→ ∀n∃̃l

(
|l | = n ∧̃ ∀U

m(m < n→ R(n −m − 1, lm))
)

t := λf ,nRn 〈nil,0 I tt〉
(
λn,pl ,pnIpb let m := fn in

〈m :: pl , if ¬pb ∨ R(n,m) then pn I pb else n I ff〉
)

Can we optimise further?
I positive computation is optimal
I negative computation searches for the last failure index
I it is sufficient to stop at the first failure index
I we mark successful counterexample candidates as n I ff
I and skip further checks if they are redundant

Efficiency refinements in the Dialectica interpretation

Counterexample marking

Counterexample marking

I t I tt — we have no information about the validity of (|Ci |)xi
t ,

I t I ff — we have checked that ¬(|Ci |)xi
t ,

Lemma
For any formula in NAω and let x : ρ∗(C) be a variable. Then
there is a term T C

./
: ρ((C)⇒ ρ((C)⇒ ρ((C) with

FV(T C
./
) ⊆ FV(C) ∪ {x}, such that for t1, t2 : ρ((C)

Ai : (|C|)x
s → (|C|)x

si
,

B : (|C|)x
s → at(m),

where ti := si I mi and s I m = T C
./

t1t2.

Efficiency refinements in the Dialectica interpretation

Counterexample marking

Counterexample marking

I t I tt — we have no information about the validity of (|Ci |)xi
t ,

I t I ff — we have checked that ¬(|Ci |)xi
t ,

Lemma
For any formula in NAω and let x : ρ∗(C) be a variable. Then
there is a term T C

./
: ρ((C)⇒ ρ((C)⇒ ρ((C) with

FV(T C
./
) ⊆ FV(C) ∪ {x}, such that for t1, t2 : ρ((C)

Ai : (|C|)x
s → (|C|)x

si
,

B : (|C|)x
s → at(m),

where ti := si I mi and s I m = T C
./

t1t2.

Efficiency refinements in the Dialectica interpretation

Counterexample marking

Counterexample marking

I t I tt — we have no information about the validity of (|Ci |)xi
t ,

I t I ff — we have checked that ¬(|Ci |)xi
t ,

Lemma
For any formula in NAω and let x : ρ∗(C) be a variable. Then
there is a term T C

./
: ρ((C)⇒ ρ((C)⇒ ρ((C) with

FV(T C
./
) ⊆ FV(C) ∪ {x}, such that for t1, t2 : ρ((C)

Ai : (|C|)x
s → (|C|)x

si
,

B : (|C|)x
s → at(m),

where ti := si I mi and s I m = T C
./

t1t2.

Efficiency refinements in the Dialectica interpretation

Conclusion

Conclusion and future work

The original Dialectica intepretation can be modified in a sound
way to produce better programs:

I programs are shorter (no code repetition, no redundant
code)

I better worst time complexity (no recomputation, no
redundant code)

I better average time complexity (“abort” effect)

Future work
I implement optimizations in Minlog
I experiment with larger case studies
I find other general improvements

Efficiency refinements in the Dialectica interpretation

Conclusion

Conclusion and future work

The original Dialectica intepretation can be modified in a sound
way to produce better programs:

I programs are shorter (no code repetition, no redundant
code)

I better worst time complexity (no recomputation, no
redundant code)

I better average time complexity (“abort” effect)

Future work
I implement optimizations in Minlog
I experiment with larger case studies
I find other general improvements

Efficiency refinements in the Dialectica interpretation

Conclusion

Conclusion and future work

The original Dialectica intepretation can be modified in a sound
way to produce better programs:

I programs are shorter (no code repetition, no redundant
code)

I better worst time complexity (no recomputation, no
redundant code)

I better average time complexity (“abort” effect)

Future work
I implement optimizations in Minlog
I experiment with larger case studies
I find other general improvements

Efficiency refinements in the Dialectica interpretation

Conclusion

Conclusion and future work

The original Dialectica intepretation can be modified in a sound
way to produce better programs:

I programs are shorter (no code repetition, no redundant
code)

I better worst time complexity (no recomputation, no
redundant code)

I better average time complexity (“abort” effect)
Future work

I implement optimizations in Minlog
I experiment with larger case studies
I find other general improvements

Efficiency refinements in the Dialectica interpretation

Conclusion

Conclusion and future work

The original Dialectica intepretation can be modified in a sound
way to produce better programs:

I programs are shorter (no code repetition, no redundant
code)

I better worst time complexity (no recomputation, no
redundant code)

I better average time complexity (“abort” effect)
Future work

I implement optimizations in Minlog
I experiment with larger case studies
I find other general improvements

Efficiency refinements in the Dialectica interpretation

Conclusion

Conclusion and future work

The original Dialectica intepretation can be modified in a sound
way to produce better programs:

I programs are shorter (no code repetition, no redundant
code)

I better worst time complexity (no recomputation, no
redundant code)

I better average time complexity (“abort” effect)
Future work

I implement optimizations in Minlog
I experiment with larger case studies
I find other general improvements

Efficiency refinements in the Dialectica interpretation

Conclusion

Conclusion and future work

The original Dialectica intepretation can be modified in a sound
way to produce better programs:

I programs are shorter (no code repetition, no redundant
code)

I better worst time complexity (no recomputation, no
redundant code)

I better average time complexity (“abort” effect)
Future work

I implement optimizations in Minlog
I experiment with larger case studies
I find other general improvements

Efficiency refinements in the Dialectica interpretation

Conclusion

Thank you

Thank you for your attention!

	Introduction
	Quasi-linear extraction
	Uniform annotations
	Counterexample marking
	Conclusion

