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Synchronizing Automata

@ A deterministic finite automaton (DFA) is a triple &7 = (Q, ¥, ).

@ The transition function § : Q x ¥ — Q naturally extends to the free
monoid X*, this extension is still denoted by ¢; also for S € Q and
w € X* we will write 6(S,w) = {é(q,w) |g €S} =S-w.

® ADFA &/ = (Q, %,0) is called synchronizing if there is a word w
whose action resets 7, that is, leaves the automaton in one
particular state no matter which state in Q it started at:
o(q,w) =4(q’,w) for all g,q’" € Q. Equivalently,
Q-w|=[6(Q,w)| = 1.

@ Any such w is called synchronizing or reset word for 7.
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Synchronizing Automata — An Example

A reset word is baaabaaab.

In fact it is the shortest reset word for this automaton.
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Cerny’s Conjecture

Suppose a synchronizing automaton has n states. What is the length
of the shortest synchronizing word?
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Cerny’s Conjecture

Suppose a synchronizing automaton has n states. What is the length
of the shortest synchronizing word?

In 1964 Jan Cerny found an infinite series of n-state reset automata
whose shortest reset word has length (n — 1)2.

Any synchronizing automaton with n states has a reset word of length
at most (n — 1)2.

o & - = DA
E. Rodaro (CMUP)



Some results

@ Consider the pairs automaton (Q x Q,X,d x §). Then </ is
synchronizing iff for any (p,q) € Q x Q thereisaword w’ € *
. .. 2(n—-1
with (p,q)-w’ = (p’,p’). We have the trivial upper bound %
Moreover the problem of checking if <7 is synchronizing is in P.

@ Greedy Algorithm. Non trivial analysis gives ”ST*” [Pin]. An even

better analysis gives % [Trahtman]. The problem of

checking if there is a synchronizing word of length at most m is
NP-complete [Eppstein].

@ The conjecture is true for many particular classes: automata with
zero, monotonic automata, aperiodic automata, automata whose
underlying digraph is Eulerian, strongly transitive automata etc.
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A New Class of Synchronizing Automata

Let o7 = (Q, X, 0) be a synchronizing DFA.
Syn(«/) denotes the language of all words synchronizing <.

A synchronizing word v is said to be minimal if none of its proper
prefixes nor suffixes is synchronizing. Equivalently none of its proper
factors is synchronizing.

The language Syn(.<) of all synchronizing words is a two-sided ideal
generated by the language Syn™"(.«7) of all minimal synchronizing
words:

Syn(«/) = £*Syn™"(o7)x*.

We consider the class FG of synchronizing automata whose language
of minimal synchronizing words is finite. Such automata are referred to
as finitely generated synchronizing automata.
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Finitely Generated Synchronizing Automata
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Finitely Generated Synchronizing Automata

The minimal automaton 27,5 recognizing the language > *abax*:

Syn(eapa) = L*abal* = Syn™"(Zaps) = {aba} = apa € FG.
For any word w € ¥* the automaton <4, € FG.
Ay has n = |w| + 1 states = its shortest reset word has length n — 1.

In general, the minimal automaton recognizing the language X*Mx*
for a finite language M is in FG.
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Auxiliary Definitions

@ T C Qisreachableifthereisv e X*with T =Q -v.
@ Fix(T) is the set of all words stabilizing T:

FiX(T)={weX|T-w=T}
@ by Syn(T ) we denote the set of all words bringing T to a singleton:
Syn(T)={w e X*||T -w| =1}

@ Letw € X*, by m(w) C Q we denote the maximal fixed set with
respectto w: m(w)-w = m(w).
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Characterization of FG
Theorem [Pribavkina, R. 2009]

A synchronizing automaton .« is in FG iff for any reachable non-
singleton subset T C Q, for each w € Fix(T) it holds

Syn(T) = Syn(m(w)).
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Cerny’s Conjecture for the Class FG

Theorem [Pribavkina, R. 2009]

Let o7 = (Q, X, 0) be a finitely generated synchronizing automaton with
n states. There is a synchronizing word of length at most 3n — 5.
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Cerny’s Conjecture for the Class FG

Theorem [Pribavkina, R. 2009]

Let o7 = (Q, X, 0) be a finitely generated synchronizing automaton with
n states. There is a synchronizing word of length at most 3n — 5.

Remark

Take any letter a € ¥, then either ak or akrak is synchronizing for some
k <n-|m(a)| and |7| < n —1).
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Cerny’s Conjecture for the Class FG

Theorem [Pribavkina, R. 2009]
Let o7 = (Q, X, 0) be a finitely generated synchronizing automaton with

n states. There is a synchronizing word of length at most 3n — 5.
Remark

Take any letter a € ¥, then either ak or akraK is synchronizing for some
k <n-—|m(a)| and |7| <n —1).

Is the bound 3n — 5 for the class FG precise? I
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The FINITENESS Problem

Given a synchronizing automaton, how can we decide whether it is
other classes of reset automata.)

finitely generated? (It is not a property of a digraph as in case of many
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FINITENESS Problem is decidable

@ Syn"N(e7) = Syn(«7) \ (XSyn(«) U Syn(«/)X).

@ The language Syn(.</) is regular (it is recognized by the power
automaton P(«) with Q as an initial state and singletons as
terminal ones).

@ If o/ has n states, then P(«7) has at most 2" — 1 states.

@ Syn™n(A) is recognized by an automaton with O(23") states, thus
checking the finiteness takes O(2°").
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Another Algorithm

Our characterization gives rise to the following algorithm
FINCHECK():
1 From a synchronizing DFA &/ = (Q,%,0) build the
power automaton P(«) = (Q,X%,J).
2 For each state T of Q do:
2.1 For each H of Q@ with T CH do:

2.2 If Fix(H)NFix(T) # @, then
231f Syn(T)#Syn(H), then exit and return NO

3 O herwise exit and return YES
Cost of this algorithm O (22"3"). With Savitch’s trick:

Proposition
FINITENESS is in PSPACE.
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Complexity of FINITENESS

Theorem [Pribavkina, R. 2009]
FINITENESS is co-NP-hard.
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Complexity of FINITENESS
Theorem [Pribavkina, R. 2009]
FINITENESS is co-NP-hard.

Theorem
FINITENESS is PSPACE-complete.

Proof Strategy: Well known PSPACE-complete problem:

NON-EMPTINESS DFA
Input: Given n DFA’'s M; = (Q;, X, d;,q;, Fy) fori =1,....n.
Question: ), L[M;] # 0?
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Proof strategy (first step)
From M; = (Q;, X, 4, q;,Fi), i = 1,...,n we create another automaton
M = <Q7 o, ¢> with Q= Uin:]_Qi U {D,D,, b, f)/,t’ﬁ} and©=%U {07 Van}
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Proof strategy (first step)

Lemma (1)

There is aword w € ©F with |w| > 2 such that ¢(Q,w) = {s,t} if and
only if Lo L[Mi] # 2.

Lemma (2)

The automaton M = (Q, ©, ¢) previously defined belongs to the class
FG.
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Proof strategy (second step)
From M = (Q, ©, ¢) we build a new automaton M’ = (Q’,©', ¢') with

Q' =Qu{p,p'}, ® =0 U{r}. Using Lemma (2) we get:
Lemma (3)

Syn™"( M') is infinite if and only if there exists w € ©* such that

¢(Q7W) = {t75}'
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Experimental Results

@ For the binary alphabet we have the following table:

n | Reset Automata | Finitely Generated Automata
1 1 1

2 12 12

3 549 405

4 51520 26032
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Experimental Results

@ For the binary alphabet we have the following table:

n | Reset Automata | Finitely Generated Automata
1 1 1

2 12 12

3 549 405

4 51520 26032

Given a n-state synchronizing automaton, what is the probability that it
is finitely generated?
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Other open problems for the class FG

@ The characterization is given in terms of the power automaton. Is
there a characterization in terms of the transition monoid of .« or
using linear algebra methods?

@ If &/ € FG give a bound for the length of the longest word in
Syn™"(7) and a bound to |Syn™"(«)|. We have proved
Theorem

Let &7 € FG with n states, let N be the number of non-singleton states

of P(«) consisting of only reachable subsets. Then the length of any
minimal synchronizing word is at most

NZ2-N+4+1<(2"-n-1)2-2"—n

Is there a polynomial bound?
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Thank you
for your attention!

E. Rodaro (CMUP)



