
Consistency and Optimality

Computability in Europe, Sofia, 2011.

Moritz Müller

with Yijia Chen and Jörg Flum



S.-D. Friedman’s question

Let Q ⊆ {0,1}∗ be a problem.



S.-D. Friedman’s question

Let Q ⊆ {0,1}∗ be a problem.

Let T ∗ ⊇ T be arithmetical theories. Then T ∗ may

verify faster algorithms for Q than T does.



S.-D. Friedman’s question

Let Q ⊆ {0,1}∗ be a problem.

Let T ∗ ⊇ T be arithmetical theories. Then T ∗ may

verify faster algorithms for Q than T does.

Question

Can T ∗ = T ∪ {ConT} be understood as a “minimal”

extension of T ?



S.-D. Friedman’s question

Let Q ⊆ {0,1}∗ be a problem.

Let T ∗ ⊇ T be arithmetical theories. Then T ∗ may
verify faster algorithms for Q than T does.

Question
Can T ∗ = T ∪ {ConT} be understood as a “minimal”
extension of T ?

Main Result
“Knowing ConT means knowing some algorithm that is
as fast as any algorithm T knows and knowing that it
is that fast.”
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A,B algorithms deciding Q ⊆ {0,1}∗.

A is as fast as B iff tA(x) ≤ p(tB(x) + |x|) for some

polynomial p.

A is optimal iff it is as fast as any algorithm deciding Q,

i.e. for all algorithms B deciding Q there is a

polynomial p such that for all x ∈ {0,1}∗

tA(x) ≤ p(tB(x) + |x|).
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Open question
Is there a Q ∈ NP \ P with an optimal algorithm?

Levin
NP search problems have optimal algorithms.

Kraj́ıček, Pudlák, Sadowski
SAT has an optimal algorithm iff both SAT and TAUT
have p-optimal proof systems.

Blum, McCreight, Meyer
E-hard problems do not have optimal algorithms.

Theorem
There is a Q ∈ E \ P with an optimal algorithm.

Theorem
Yes, if the Measure Hypothesis holds true.



Fast diagonal algorithms I

Observation

Assume D is a c.e. set of algorithms deciding Q. Then

there is A deciding Q that is as fast as every B ∈ D.

For D := {B | B T -provably decides Q} and c.e. T

...
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Theories

Fix some decidable Q and A0 deciding Q.

consider theories T in the language {+, · ,0,1,≤}.

natural n is denoted by term ṅ.

B T -provably decides Q iff T proves “Ḃ decides Q”.

“u decides Q” := u always halts and

∀xyy′zz′(Run(Ȧ0, x, y, z) ∧Run(u, x, y′, z′)→ y = y′)



Fast diagonal algorithms II

Observation

Assume D is a c.e. set of algorithms deciding Q. Then

there is A deciding Q that is as fast as every B ∈ D.

For D := {B | B T -provably decides Q} and c.e. T

...get A as fast as any algorithm T -provably decides Q.

provided any B ∈ D decides Q.
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T is sound for Q-decision: if B T -provably decides Q,
then B decides Q.

T is complete for Q-decision: if B decides Q, then B

T -provably decides Q.

Proposition
No c.e. theory is sound and complete for Q-decision.

Proposition
Q has an optimal algorithm ⇐⇒ there is a c.e. theory
T that is sound and almost complete for Q-decision.

for all B deciding Q there is A that T -provably
decides Q and is as fast as B.
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Fast diagonal algorithms III

Observation
Assume T is c.e. and sound for Q-decision.
Then there is AT that is as fast as every B that T -
provably decides Q and AT decides Q.

Lemma
Assume Q /∈ P and T is c.e. and Σ0

1-complete.
Then there is AT that is as fast as every B that T -
provably decides Q and

T is consistent ⇐⇒ AT decides Q.

Proof. Work with

D := {“B and A0 in parallel” | B T -provably decides Q}.
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Let Q /∈ P, decidable and let T0 be a suitable finite, true
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Given a c.e. T ⊇ T0 one can compute AT such that
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Furthermore T0 proves this.
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Characterization of ConT .

Let Q /∈ P, decidable and let T0 be a suitable finite, true
theory.

Given a c.e. T ⊇ T0 one can compute AT such that

(1) AT is as fast as every B that T -provably decides Q.
Furthermore T0 proves this.

(2) For every c.e. T ∗ ⊇ T :

T ∗ proves ConT ⇐⇒ AT T ∗-provably decides Q

⇐⇒ there is A that T ∗-provably decides Q and T ∗ proves

∀u
(
u T -provably decides Q→ Ȧ is as fast as u

)
.



Special case I

Corollary

Assume ZFC is consistent. Then there is Q such that

(1) there is no algorithm that decides Q as fast as any

algorithm deciding Q.

(2) there is an algorithm that decides Q as fast as any

algorithm ZFC-provably deciding Q.



Special case II

Blum, Mc Creight, Meyer

If Q is E-hard, then there is a computable g such that

(1) if A decides Q, then so does g(A).

(2) A is not as fast as g(A).



Special case II

Blum, Mc Creight, Meyer

If Q is E-hard, then there is a computable g such that

(1) if A decides Q, then so does g(A).

(2) A is not as fast as g(A).

Corollary

There is a finite true T1 such that for all consistent c.e.

T ⊇ T1:

T 6` ConT .



Proof

Argue in T :

ConT
→ AT decides Q (Lemma)

→ g(AT ) decides Q (BMcCM)

Argue outside T :

T ` ConT
⇒ g(AT ) T -provably decides Q

⇒ AT is as fast as g(AT ) (Lemma)

⇒ AT does not decide Q (BMcCM)

⇒ T is inconsistent (Lemma).



Thank you.


