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Let @ C {0,1}* be a problem.

Let T* O T be arithmetical theories. Then T™* may
verify faster algorithms for Q than T does.

Question
Can T* = T U {Conp} be understood as a “minimal”
extension of T' 7

Main Result
“Knowing Cont means knowing some algorithm that is
as fast as any algorithm 7" knows and knowing that it
is that fast.”
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Optimality
A, B algorithms deciding @ C {0,1}*.

A is as fast as B iff ty(x) < p(tg(x) + |x|) for some
polynomial p.
A is optimal iff it is as fast as any algorithm deciding @,

i.e. for all algorithms B deciding @ there is a
polynomial p such that for all z € {0, 1}*

ta(z) < p(tp(z) + [z]).



Open question
Is there a Q € NP \ P with an optimal algorithm?

Levin
NP search problems have optimal algorithms.

KrajiCek, Pudlak, SadowsKi
SAT has an optimal algorithm iff both SAT and TAUT
have p-optimal proof systems.



Open question
Is there a @ € NP \ P with an optimal algorithm?

Levin
NP search problems have optimal algorithms.

KrajiCek, Pudlak, Sadowski
SAT has an optimal algorithm iff both SAT and TAUT
have p-optimal proof systems.

Blum, McCreight, Meyer
E-hard problems do not have optimal algorithms.

T heorem
There is a Q € E\ P with an optimal algorithm.

Theorem
Yes, if the Measure Hypothesis holds true.
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Theories

Fix some decidable Q and Ag deciding Q.

consider theories T in the language {4, - ,0,1,<}.
natural n is denoted by term n.

B T-provably decides @ iff T proves “B decides Q" .
“u decides Q" = u always halts and

Vayy'zz'(Run(Ag, z,y, 2) A Run(u,z,y',2") =y =y')



Fast diagonal algorithms II

Observation
Assume D is a c.e. set of algorithms deciding 2. Then
there is A deciding @) that is as fast as every B € D.

For D :={B | B T-provably decides Q} and c.e. T
...get A as fast as any algorithm T-provably decides Q).

provided any B € D decides (.
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T is sound for ()-decision: if B T-provably decides @,
then B decides Q.

T is complete for ()-decision: if B decides ), then B
T-provably decides Q.

Proposition
No c.e. theory is sound and complete for Q-decision.

Proposition
(Q has an optimal algorithm <= there is a c.e. theory
T that is sound and almost complete for )-decision.

for all B deciding @ there is A that T-provably
decides Q) and is as fast as B.



Fast diagonal algorithms III

Observation
Assume T’ is c.e. and sound for ()-decision.
Then there is A that is as fast as every B that T-

provably decides Q and A decides Q.



Fast diagonal algorithms III

Observation

Assume T' is c.e. and sound for ()-decision.

Then there is Ap that is as fast as every B that T-
provably decides Q and A, decides Q.

Lemma

Assume T' is c.e. and consistent, Z?—complete.

Then there is A that is as fast as every B that T-
provably decides Q and A decides Q.

Proof. Work with

D :={"“B and Ag in parallel” | B T-provably decides Q}.



Fast diagonal algorithms III

Observation

Assume T’ is c.e. and sound for ()-decision.

Then there is Ap that is as fast as every B that T-
provably decides Q and Ap decides Q.

Lemma
Assume Q ¢ P and T is c.e. and Z$-complete.

Then there is Ap that is as fast as every B that T-
provably decides  and

T is consistent <= A decides Q.
Proof. Work with

D :={"B and Ag in parallel” | B T-provably decides Q}.
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Characterization of Cony.

Let Q ¢ P, decidable and let Ty be a suitable finite, true
theory.

Given a c.e. T D Iy one can compute A7 such that

(1) Ap is as fast as every B that T-provably decides Q.
Furthermore Ty proves this.

(2) For every c.e. T* D T
T* proves Conp <— Ap T*-provably decides @

<= there is A that T*-provably decides Q and T™ proves

Yu (u T-provably decides Q — A is as fast as u)



Special case 1

Corollary
Assume ZFC is consistent. Then there is Q such that

(1) there is no algorithm that decides ) as fast as any
algorithm deciding Q.

(2) there is an algorithm that decides @) as fast as any
algorithm ZFC-provably deciding Q.



Special case 11

Blum, Mc Creight, Meyer

If @ is E-hard, then there is a computable g such that
(1) if A decides @, then so does g(A).

(2) A is not as fast as g(A).



Special case 11

Blum, Mc Creight, Meyer

If @ is E-hard, then there is a computable g such that
(1) if A decides @, then so does g(A).

(2) A is not as fast as g(A).

Corollary
There is a finite true T7 such that for all consistent c.e.
T O T7:

Tt Conyp.



Proof
Argue in T':

ConT
— Ap decides Q (Lemma)
— g(Ap) decides Q (BMcCM)

Argue outside T':

T ConT

= g(Ap) T-provably decides @

= Ap is as fast as g(A7r) (Lemma)
= Ap does not decide Q (BMcCM)
= T is inconsistent (Lemma).



Thank you.



