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Recursive isomorphism

Definition
If x and y are subsets of ω, then x and y are said to be
recursively isomorphic if there is a recursive bijection f : ω → ω
so that f (x) = y .

If we view x and y as elements of 2ω, this is equivalent to saying
that there’s a recursive permutation of the bits of x that yields y .

We analogously define recursive isomorphism between elements of
nω, or elements of ωω.
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Countable Borel equivalence relations

Definition
A Borel equivalence relation E is an equivalence relation on a
Polish space X such that E is Borel as a subset of X × X .

Equivalently, think of a Borel equivalence relation as an
equivalence relation on 2ω that has a Σ0

α definition for some
α < ω1.

A countable Borel equivalence relation is a Borel equivalence
relation whose equivalence classes are all countable

Most equivalence relations from recursion theory are countable
Borel equivalence relations. (Recursive isomorphism, ≡T , ≡A, etc.)
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Borel reducibility

Definition
If E and F are Borel equivalence relations on X and Y , then E is
said to be Borel reducible to F iff there is a function Φ : X → Y
so that for all x , y ∈ X , we have xEy if and only if Φ(x)FΦ(y).

Example:

Folklore
For all reals x , y , we have x ≡T y if and only if x ′ and y ′ are
recursively isomorphic.

Thus, the function x 7→ x ′ is a reduction of Turing equivalence to
recursive isomorphism.
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Borel reducibility for recursive isomorphism

The identify function witnesses

recursive isomorphism on ωω

...

≤
B

recursive isomorphism on 4ω

≤
B

recursive isomorphism on 3ω
≤

B

recursive isomorphism on 2ω



Universal countable Borel equivalence relations

Definition
A countable Borel equivalence relation E is said to be universal if
for all countable Borel equivalence relations F , we have F ≤B E .

Theorem (Dougherty-Jackson-Kechris, 1994)

There exist universal countable Borel equivalence relations.

Examples of universal countable Borel equivalence relations:

I Arithmetic equivalence (Slaman-Steel)

I Poly-time equivalence.
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Is recursive isomorphism universal?

Open

Is recursive isomorphism a universal countable Borel equivalence
relation?

(We could equally well ask the same question for other
equivalences from recursion theory.)

The question reflects a theme in recursion theory where
recursion-theoretic structures are often as rich and complicated as
possible.



Is recursive isomorphism universal?

Open

Is recursive isomorphism a universal countable Borel equivalence
relation?

(We could equally well ask the same question for other
equivalences from recursion theory.)

The question reflects a theme in recursion theory where
recursion-theoretic structures are often as rich and complicated as
possible.



Previous results

Theorem (Dougherty-Kechris, 1991)

Recursive isomorphism on ωω is a universal countable Borel
equivalence relation

Theorem (Andretta-Camerlo-Hjorth, 2001)

Recursive isomorphism on 5ω is a universal countable Borel
equivalence relation
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Progress on this question

Theorem (M.)

Recursive isomorphism on 3ω is a universal countable Borel
equivalence relation

Whether recursive isomorphism on 2ω is universal remains open.
However, we’re able to give a concise explanation of the difference
between 2 and 3.

I The reason the proof doesn’t generalize to recursive
isomorphism on 2ω is a family of graphs that can be
3-colored, but can’t be 2-colored.

I Whether recursive isomorphism on 2ω is universal seems to be
related to a problem in Borel combinatorics.
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Some basic notions in combinatorics

A graph on X is a symmetric irreflexive relation on X .

An n-regular graph is a graph where each vertex has degree n. A
bipartite graph is a graph whose vertices can be partitioned into
two disjoint sets U and V where no two vertices in U are adjacent,
and no two vertices in V are adjacent. The graph drawn below is
bipartite 3-regular.
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A coloring of a graph is a function f on the vertices of the graph
so that if x and y are neighbors, then f (x) 6= f (y). If the range of
f is n, then we say f is an n-coloring.



Some basic notions in combinatorics

A graph on X is a symmetric irreflexive relation on X .

A matching of a graph is a subset M of its edges so that each
vertex is incident to exactly one edge in M.



Borel combinatorics

The field of Borel combinatorics studies combinatorial problems
such as graph colorings, and matchings, but on Borel objects, and
where we demand Borel witnesses.

Definition
A Borel graph on 2ω is a graph G whose vertices are the
elements of 2ω, where the edge relation has a Borel definition.
For this talk, all Borel graphs will be on 2ω.

A Borel coloring of a Borel graph G with n colors is a Borel
function c : 2ω → n that colors G .
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Examples of Borel combinatorics

Classical Theorem (Brooks, 1941)

If G is a graph where each vertex has degree less than or equal to
d , then there’s a coloring of G with d + 1 colors

Borel Analogue (Kechris-Solecki-Todorčević, 1999)

If G is a Borel graph where each vertex has degree less than or
equal to d , then there’s a Borel coloring of G with d + 1 colors.



Examples of Borel combinatorics

Classical Theorem (König, 1916)

Every bipartite n-regular graph has a Borel perfect matching.

The Borel Analogue is False (Laczkovich, 1988)

There is a Borel bipartite 2-regular graph with no perfect
matching.

Open

Does every Borel bipartite 3-regular graph have a perfect
matching?
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The combinatorics of the universality of recursive
isomorphism

Suppose {Gi}i∈ω is a set of Borel graphs on 2ω. If {ci}i∈ω is a set
of colorings where ci colors Gi , say that a point x ∈ 2ω is
monochromatic if it’s assigned the same color by all the ci .

Open (non-monochromatic 3-coloring)

Suppose {Gi}i∈ω is a countable set of 2-regular Borel graphs.
Must there be a set {ci}i∈ω of Borel 3-colorings of the Gi with no
no monochromatic points?

If non-monochromatic 3-coloring is true, then recursive
isomorphism is a universal.
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An equivalence

Theorem (M.)

Non-monochromatic 3-coloring is true iff many-1 equivalence is a
uniformly universal countable Borel equivalence relation

Uniformly universal means that it is a universal countable Borel
equivalence relation, and it also satisfies a uniformity condition in
how this universality is witnessed. All known universal equivalence
relations are uniformly universal.

Conjecture

Recursive isomorphism is uniformly universal iff
non-monochromatic 3-coloring is true.
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An intriguing possibility

Suppose we guess that Borel analogues of classical theorems are
rare, and that equivalences from recursion theory are universal iff
they’re uniformly universal.

Then it seems natural to believe that recursive isomorphism on 2ω

is not universal. This would be a striking result – it would say that
the recursive isomorphism on 3ω is fundamentally different from
recursive isomorphism on 2ω, and that this difference doesn’t exist
between 3ω and 4ω, etc.



More about non-monochromatic 3-coloring

I If non-monochromatic 3-coloring is false, this would resolve
several open questions in Borel combinatorics in the negative.
For instance, this would resolve the open question about Borel
perfect matchings.

I Non-monochromatic 3-coloring is true for measure and
category. That is, you can throw away a meager or null set
and find a Borel non-monochromatic 3-coloring on the
remaining set.

I This implies that one can’t use pure measure or category
arguments to show that recursive isomorphism isn’t universal.

I Most negative results in Borel combinatorics use measure or
category arguments. A counterexample to
non-monochromatic 3-coloring would therefore be very
interesting since it can’t use such techniques.
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Where does non-monochromatic 3-coloring come from?

It comes from an ω-length construction. At each stage, we obtain
directed graphs consisting of odd length directed cycles. We need
to assign 0 or 1 to each vertex. Each time this value changes when
we move from a vertex to the next vertex, this corresponds to a
real on which we’ve diagonalized. However, since the cycle has odd
length, we can’t diagonalize everywhere.

Stage 0: Stage 0:

0

0
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Where does non-monochromatic 3-coloring come from?

We can re-assign the vertices where we don’t diagonalize to be “2”
instead of 0 or 1. Then this assignment gives a coloring.
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Where does non-monochromatic 3-coloring come from?

We get ω many graphs like this, with which we try to diagonalize
everywhere. However, if at a single point we use “2” in every
coloring, this corresponds to a situation where we never diagonalize
on that real.

Stage 1: Stage 0:



There seems to be a large potential for productive interaction
between global problems in recursion theory and Borel

combinatorics.


