The cohesive principle and the Bolzano-Weierstraß principle

Alexander P. Kreuzer

Technische Universität Darmstadt, Germany

CiE, Sofia, June 2011

The Bolzano-Weierstraß principle

A real number is a sequence of rational numbers with Cauchy-rate 2^{-n} .

Definition

(BW):

Every bounded sequence $(x_n)_n \subseteq \mathbb{R}$ has a cluster point.

Equivalently, every bounded sequence $(x_n)_n \subseteq \mathbb{R}$ contains a Cauchy-subsequence (y_n) with Cauchy-rate 2^{-n} , i.e. with

$$\forall n \, \forall i, j \ge n \, \left(|y_i - y_j| < 2^{-n} \right).$$

Definition

 (BW_{weak}) :

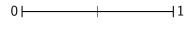
Every bounded sequence $(x_n)_n \subseteq \mathbb{R}$ contains a Cauchy-subsequence $(y_n)_n$, i.e.

$$\forall n \,\exists k \,\forall i, j \geq k \, \left(|y_i - y_j| < 2^{-n} \right).$$

Computing BW

Assume that $(x_n)_n \subseteq [0,1] \cap \mathbb{Q}$.

Goal: Construct a subsequence (y_n) with $\forall n \, \forall i, j \geq n \, (|y_i - y_j| < 2^{-n})$.



 $0 \longmapsto \frac{1}{2} \quad \frac{1}{2} \longmapsto 1$

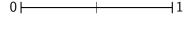
- $0 \mapsto \frac{1}{4} \frac{1}{4} \mapsto \frac{1}{2} \frac{1}{2} \mapsto \frac{3}{4} \frac{3}{4} \mapsto 1$

- bi-partition argument
- $\bullet \ y_n := \begin{cases} \text{next element of } (x_n) \\ \text{in the } n\text{-th partition} \\ \text{chosen} \end{cases}$

Computing BW

Assume that $(x_n)_n \subseteq [0,1] \cap \mathbb{Q}$.

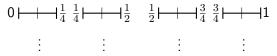
Goal: Construct a subsequence (y_n) with $\forall n \, \forall i, j \geq n \, (|y_i - y_j| < 2^{-n})$.



bi-partition argument

 $0 \longmapsto \frac{1}{2} \quad \frac{1}{2} \longmapsto 1$

• $y_n := \begin{cases} \text{next element of } (x_n) \\ \text{in the } n\text{-th partition} \end{cases}$



- The partitions form a Π_2^0 -0/1-tree.
- This is a Π_1^0 -0/1-tree in 0'.
- WKL relativized to 0' yields an infinite branch and therefore computes the sequence of partitions.

Theorem (Kohlenbach '98, Kohlenbach, Safarik '10, K. '10)

• For each computable sequence (x_n) there is a 0'-computable 0/1-tree T, such that an infinite branch of T computes a cluster point, and vice versa.

Theorem (Kohlenbach '98, Kohlenbach, Safarik '10, K. '10)

- For each computable sequence (x_n) there is a 0'-computable 0/1-tree T, such that an infinite branch of T computes a cluster point, and vice versa.
- Over RCA₀ the principles BW and WKL for Σ_1^0 -trees are instance-wise equivalent.

Theorem (Kohlenbach '98, Kohlenbach, Safarik '10, K. '10)

- For each computable sequence (x_n) there is a 0'-computable 0/1-tree T, such that an infinite branch of T computes a cluster point, and vice versa.
- Over RCA₀ the principles BW and WKL for Σ_1^0 -trees are instance-wise equivalent.

By the low basis theorem:

Corollary

BW has for computable instances a solution low relative to 0', i.e. the first Turing jump of a solution is computable in 0''.

Assume that $(x_n)_n \subseteq [0,1] \cap \mathbb{Q}$.

Goal: Construct a subsequence (y_n) with $\forall n \, \exists k \, \forall i, j \geq k \, (|y_i - y_j| < 2^{-n})$ and compute the Turing jump of (y_n) .

Assume that $(x_n)_n \subseteq [0,1] \cap \mathbb{Q}$.

Goal: Construct a subsequence (y_n) with $\forall n \, \exists k \, \forall i, j \geq k \, (|y_i - y_j| < 2^{-n})$ and compute the Turing jump of (y_n) .

It is clear that

$$\Phi_e^{(y_n)_n} \downarrow \quad \text{iff} \quad \exists k \, \Phi_e^{(y_n)_{n < k}} \downarrow.$$

Assume that $(x_n)_n \subseteq [0,1] \cap \mathbb{Q}$.

Goal: Construct a subsequence (y_n) with $\forall n \exists k \ \forall i, j \geq k \ (|y_i - y_j| < 2^{-n})$ and compute the Turing jump of (y_n) .

It is clear that

$$\Phi_e^{(y_n)_n} \downarrow \quad \text{iff} \quad \exists k \, \Phi_e^{(y_n)_{n < k}} \downarrow.$$

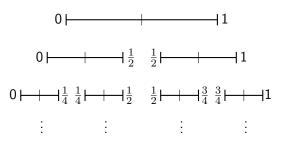
Suppose that $(y_n)_{n < m}$ is an initial segment that has already been computed. Deciding, whether there is an extension $(y_n)_{n < l}$, such that

$$\Phi_e^{(y_n)_{n< l}}\downarrow$$

can be done in 0'.

Assume that $(x_n)_n \subseteq [0,1] \cap \mathbb{Q}$.

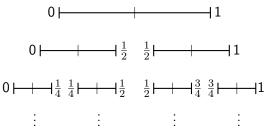
Goal: Construct a subsequence (y_n) with $\forall n \exists k \ \forall i, j \geq k \ (|y_i - y_j| < 2^{-n})$ and compute the Turing jump of (y_n) .



- bi-partition argument
- now add at each step not only one element but finitely many elements of the chosen interval to (y_n).

Assume that $(x_n)_n \subseteq [0,1] \cap \mathbb{Q}$.

Goal: Construct a subsequence (y_n) with $\forall n \exists k \ \forall i, j \geq k \ (|y_i - y_j| < 2^{-n})$ and compute the Turing jump of (y_n) .



- bi-partition argument
- now add at each step not only one element but finitely many elements of the chosen interval to (y_n).
- Let $(y_n)_{n < m}$ be the initial segment of (y_n) computed up to the k-th step.
 - At the k-th step extend this to $(y_n)_{n< l}$ by elements in the k-th chosen interval, such that $\Phi_k^{(y_n)_{n< l}}\downarrow$, if possible.
- Then extend this by another element of the interval.

Theorem (K.)

For each bounded, computable sequence (x_n) there is a Cauchy-subsequence (y_n) , such that (y_n) and $(y_n)'$ are computable in a Turing degree that contains infinite branches of 0'-computable 0/1-trees.

Theorem (K.)

For each bounded, computable sequence (x_n) there is a Cauchy-subsequence (y_n) , such that (y_n) and $(y_n)'$ are computable in a Turing degree that contains infinite branches of 0'-computable 0/1-trees.

Corollary

BW_{weak} has low_2 solutions, i.e. $(y_n)''$ is computable in 0''.

Proof.

$$(y_n)' \leq_T 0' + \mathsf{WKL} \implies (y_n)'' \leq_T 0''$$

 $\mathsf{BW}_\mathsf{weak}$ does not compute 0' and is therefore strictly weaker than BW .

The cohesive principle

Write $X \subseteq^* Y$ if $X \setminus Y$ is finite.

Definition

• A set X is *cohesive* for a sequence of set $(R_n)_n \subseteq 2^{\mathbb{N}}$ if

$$X \subseteq^* R_n \vee X \subseteq^* \overline{R_n}$$
 for each n .

• The cohesive principle (COH) states that for each $(R_n)_n$ there is an infinite cohesive set X.

The cohesive principle

Write $X \subseteq^* Y$ if $X \setminus Y$ is finite.

Definition

• A set X is *cohesive* for a sequence of set $(R_n)_n \subseteq 2^{\mathbb{N}}$ if

$$X \subseteq^* R_n \vee X \subseteq^* \overline{R_n}$$
 for each n .

• The cohesive principle (COH) states that for each $(R_n)_n$ there is an infinite cohesive set X.

Theorem (K.)

- For each sequence $(x_n)_n \subseteq \mathbb{R}$ there exists $(R_n)_n \subseteq 2^{\mathbb{N}}$, such that from an infinite cohesive set for (R_n) one can compute a Cauchy-subsequence of (x_n) and vice versa.
- RCA₀ \vdash BW_{weak} \leftrightarrow COH \land $B\Sigma_2^0$ Moreover, this equivalence also holds instance-wise.

Theorem

- COH and hence also BW_{weak} do not compute solutions to WKL in general. (Cholak, Jockusch, Slaman '01)
- There are instance of these principle which have no low solutions. (Jockusch, Stephan '93)

Proof of the low_2 -ness of BW_{weak} is a streamlined version of the low_2 -ness of COH (Jockusch, Stephan '93).

Theorem (Chong, Slaman, Yang '10)

 $\mathsf{RCA}_0 + \mathsf{COH} + B\Sigma_2^0$ and thus $\mathsf{RCA}_0 + \mathsf{BW}_\mathsf{weak}$ are Π_1^1 -conservative over $\mathsf{RCA}_0 + B\Sigma_2^0$.

Theorem (K., Kohlenbach '10)

```
If \mathsf{WKL}_0 + \mathsf{BW}_\mathsf{weak} \vdash \forall f \, \exists y \, \phi(f,y) for quantifier free \phi, then one can extract from a given proof a primitive recursive function(al) t such that \forall f \, \phi(f,t(f)).
```

"Proof mining"

Bolzano-Weierstraß in the weak topology

We consider the Hilbert space $\ell_2=(\mathbb{R}^\mathbb{N},\langle\cdot,\cdot\rangle)$. An element of ℓ_2 is given by a Cauchy-sequence $(w_n)_n$ of finite dimensional and rational approximations, i.e. $w_n\in\mathbb{Q}^{<\mathbb{N}}$, with Cauchy-rate 2^{-n} with respect to $\|\cdot\|$.

Bolzano-Weierstraß in the weak topology

We consider the Hilbert space $\ell_2=(\mathbb{R}^\mathbb{N},\langle\cdot,\cdot\rangle)$. An element of ℓ_2 is given by a Cauchy-sequence $(w_n)_n$ of finite dimensional and rational approximations, i.e. $w_n\in\mathbb{Q}^{<\mathbb{N}}$, with Cauchy-rate 2^{-n} with respect to $\|\cdot\|$.

Definition

(weak-BW): Every $\|\cdot\|$ -bounded sequence $(x_n) \subseteq \ell_2$ has a weak cluster point x, i.e. $\forall y \in \ell_2 \lim_{n \to \infty} \langle y, x_n \rangle = \langle y, x \rangle$.

Bolzano-Weierstraß in the weak topology

We consider the Hilbert space $\ell_2=(\mathbb{R}^\mathbb{N},\langle\cdot,\cdot\rangle)$. An element of ℓ_2 is given by a Cauchy-sequence $(w_n)_n$ of finite dimensional and rational approximations, i.e. $w_n\in\mathbb{Q}^{<\mathbb{N}}$, with Cauchy-rate 2^{-n} with respect to $\|\cdot\|$.

Definition

(weak-BW): Every $\|\cdot\|$ -bounded sequence $(x_n) \subseteq \ell_2$ has a weak cluster point x, i.e. $\forall y \in \ell_2 \lim_{n \to \infty} \langle y, x_n \rangle = \langle y, x \rangle$.

Theorem (K.)

- For each bounded sequence $(x_n) \subseteq \ell_2$ there is a weak cluster point x computable in 0''.
- There is a bounded and computable sequence $(x_n) \subseteq \ell_2$, such that each weak cluster point of it computes 0''.
- Over RCA₀ the principles Π₂-CA and weak-BW are instance-wise equivalent.

Summary

- BW is equivalent to WKL for 0'-computable trees.
- BW_{weak} is equivalent to COH.
 - Hence, it does not imply 0'.
 - It admits extraction of primitive recursive terms.
- weak-BW is equivalent to 0''.

References

Alexander P. Kreuzer

The cohesive principle and the Bolzano-Weierstraß principle, Math. Log. Quart. **57** (2011), no. 3, 292–298.

Alexander P. Kreuzer and Ulrich Kohlenbach, Term extraction and Ramsey's theorem for pairs, submitted.

Alexander P. Kreuzer,

On the strength of weak compactness, preprint, arXiv:1106.5124.