Incomputability of Simply Connected Planar Continua

Takayuki Kihara

Mathematical Institute, Tohoku University

Computability in Europe 2011

June 29, 2011
Every nonempty Σ^0_1 set in \mathbb{R}^n contains a computable point.
Every nonempty Σ^0_1 set in \mathbb{R}^n contains a computable point.

Not every nonempty Π^0_1 set in \mathbb{R}^n contains a computable point.
Every nonempty Σ^0_1 set in \mathbb{R}^n contains a computable point.

Not every nonempty Π^0_1 set in \mathbb{R}^n contains a computable point.

If a nonempty Π^0_1 subset $F \subseteq \mathbb{R}^1$ contains no computable points, then F must be disconnected.
Introduction

Main Theorem

- Every nonempty Σ^0_1 set in \mathbb{R}^n contains a computable point.
- Not every nonempty Π^0_1 set in \mathbb{R}^n contains a computable point.
- If a nonempty Π^0_1 subset $F \subseteq \mathbb{R}^1$ contains no computable points, then F must be *disconnected*.
- Does there exist a nonempty (simply) *connected* Π^0_1 set in \mathbb{R}^n without computable points?

Takayuki Kihara

Incomputability of Simply Connected Planar Continua
Every nonempty Σ^0_1 set in \mathbb{R}^n contains a computable point.

Not every nonempty Π^0_1 set in \mathbb{R}^n contains a computable point.

If a nonempty Π^0_1 subset $F \subseteq \mathbb{R}^1$ contains no computable points, then F must be disconnected.

Does there exist a nonempty (simply) connected Π^0_1 set in \mathbb{R}^n without computable points?

The main theme of this talk is Computability Theory for Connected Spaces.
{\mathcal{B}_e}_{e \in \mathbb{N}}: an effective enumeration of all rational open balls.

1. $x \in \mathbb{R}^n$ is \textit{computable} if $\{e \in \mathbb{N} : x \in \mathcal{B}_e\}$ is c.e.

Equivalently, $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ is computable iff x_i is computable for each $i \leq n$.

\vspace{1cm}

Takayuki Kihara

Incomputability of Simply Connected Planar Continua
Definition

$\{B_e\}_{e \in \mathbb{N}}$: an effective enumeration of all rational open balls.

1. $x \in \mathbb{R}^n$ is **computable** if $\{e \in \mathbb{N} : x \in B_e\}$ is c.e.
 Equivalently, $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ is computable iff x_i is computable for each $i \leq n$.

2. $F \subseteq \mathbb{R}^n$ is Π^0_1 (or **co-c.e. closed**) if $F = \mathbb{R}^n \setminus \bigcup_{e \in W} B_e$ for a c.e. set W.

Takayuki Kihara

Incomputability of Simply Connected Planar Continua
Introduction
Main Theorem

Definition

\{B_e\}_{e \in \mathbb{N}}: an effective enumeration of all rational open balls.

1. \(x \in \mathbb{R}^n\) is \textit{computable} if \(\{e \in \mathbb{N} : x \in B_e\}\) is c.e. Equivalently, \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n\) is computable iff \(x_i\) is computable for each \(i \leq n\).

2. \(F \subseteq \mathbb{R}^n\) is \(\Pi^0_1\) (or \textit{co-c.e. closed}) if \(F = \mathbb{R}^n \setminus \bigcup_{e \in W} B_e\) for a c.e. set \(W\).

1. Not every nonempty \(\Pi^0_1\) set in \(\mathbb{R}^1\) contains a computable point.
Definition

$\{B_e\}_{e \in \mathbb{N}}$: an effective enumeration of all rational open balls.

1. $x \in \mathbb{R}^n$ is *computable* if $\{e \in \mathbb{N} : x \in B_e\}$ is c.e.
 Equivalently, $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ is computable iff x_i is computable for each $i \leq n$.

2. $F \subseteq \mathbb{R}^n$ is Π^0_1 (or *co-c.e. closed*) if $F = \mathbb{R}^n \setminus \bigcup_{e \in W} B_e$ for a c.e. set W.

1. Not every nonempty Π^0_1 set in \mathbb{R}^1 contains a computable point.

2. (*Category*) Every nonempty *co-meager* Π^0_1 set in \mathbb{R}^n contains a computable point.

Takayuki Kihara

Incomputability of Simply Connected Planar Continua
Definition

\(\{B_e\}_{e \in \mathbb{N}} \): an effective enumeration of all rational open balls.

1. \(x \in \mathbb{R}^n \) is **computable** if \(\{e \in \mathbb{N} : x \in B_e\} \) is c.e.
 Equivalently, \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n \) is computable iff \(x_i \) is computable for each \(i \leq n \).

2. \(F \subseteq \mathbb{R}^n \) is \(\Pi^0_1 \) (or **co-c.e. closed**) if \(F = \mathbb{R}^n \setminus \bigcup_{e \in W} B_e \) for a c.e. set \(W \).

1. Not every nonempty \(\Pi^0_1 \) set in \(\mathbb{R}^1 \) contains a computable point.

2. (Category) Every nonempty **co-meager** \(\Pi^0_1 \) set in \(\mathbb{R}^n \) contains a computable point.

3. (Measure) Not every nonempty **positive measure** \(\Pi^0_1 \) set in \(\mathbb{R}^1 \) contains a computable point.
Definition

\{B_e\}_{e \in \mathbb{N}}: an effective enumeration of all rational open balls.

1. \(x \in \mathbb{R}^n \) is **computable** if \(\{e \in \mathbb{N} : x \in B_e\} \) is c.e.
 Equivalently, \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n \) is computable iff \(x_i \) is computable for each \(i \leq n \).

2. \(F \subseteq \mathbb{R}^n \) is \(\Pi^0_1 \) (or **co-c.e. closed**) if \(F = \mathbb{R}^n \setminus \bigcup_{e \in W} B_e \) for a c.e. set \(W \).

1. Not every nonempty \(\Pi^0_1 \) set in \(\mathbb{R}^1 \) contains a computable point.

2. *(Category)* Every nonempty co-meager \(\Pi^0_1 \) set in \(\mathbb{R}^n \) contains a computable point.

3. *(Measure)* Not every nonempty positive measure \(\Pi^0_1 \) set in \(\mathbb{R}^1 \) contains a computable point.

4. *(Connectedness)* What about **connected**, **simply connected**, or **contractible** \(\Pi^0_1 \) sets?
Connected \prod^0_1 Sets

Observation

1. Every nonempty connected \prod^0_1 subset $P \subseteq \mathbb{R}^1$ contains a computable point.
Connected Π^0_1 Sets

Observation

1. Every nonempty connected Π^0_1 subset $P \subseteq \mathbb{R}^1$ contains a computable point.

Fact

1. There exists a nonempty connected Π^0_1 subset $P^{(2)} \subseteq \mathbb{R}^2$ without computable points.

2. There exists a nonempty simply connected Π^0_1 subset $P^{(3)} \subseteq \mathbb{R}^3$ without computable points.
Example

\[P^{(2)} \]

\[\vdots \]

\[\vdots \]

\[\vdots \]

\[\vdots \]

\[P \]

\[P^{(n)} = \bigcup_{k<n} ([0, 1]^k \times P \times [0, 1]^{n-k-1}) \text{ for } P \subseteq [0, 1]. \]
Example

\[P^{(n)} = \bigcup_{k<n} ([0, 1]^k \times P \times [0, 1]^{n-k-1}) \text{ for } P \subseteq [0, 1]. \]

Let \(P \subseteq [0, 1] \) be a \(\Pi^0_1 \) set without computable points.
Let $P \subseteq [0, 1]$ be a Π^0_1 set without computable points.

$P^{(2)} \subseteq [0, 1]^2$ is a connected Π^0_1 set without computable points.
\[P^{(n)} = \bigcup_{k<n}([0,1]^k \times P \times [0,1]^{n-k-1}) \text{ for } P \subseteq [0,1]. \]

- Let \(P \subseteq [0,1] \) be a \(\Pi_1^0 \) set without computable points.
- \(P^{(2)} \subseteq [0,1]^2 \) is a connected \(\Pi_1^0 \) set without computable points.
- \(P^{(3)} \subseteq [0,1]^3 \) is a simply connected \(\Pi_1^0 \) set without computable points.
Introduction

Main Theorem

- **X** is \(n \)-connected \(\iff \) the first \(n + 1 \) homotopy groups vanish identically.
- **X** is path-connected \(\iff \) **X** is 0-connected.
- **X** is simply connected \(\iff \) **X** is 1-connected.
- **X** is contractible \(\iff \) the identity map on **X** is null-homotopic.
- **X** is contractible \(\implies \) **X** is \(n \)-connected for any \(n \).
\(X \) is \(n \)-connected \(\iff \) the first \(n + 1 \) homotopy groups vanish identically.

\(X \) is path-connected \(\iff X \) is 0-connected.

\(X \) is simply connected \(\iff X \) is 1-connected.

\(X \) is contractible \(\iff \) the identity map on \(X \) is null-homotopic.

\(X \) is contractible \(\implies X \) is \(n \)-connected for any \(n \).

Observation

Let \(P \subseteq [0, 1] \) be a \(\Pi^0_1 \) set without computable points.
Introduction

Main Theorem

- X is n-connected \iff the first $n + 1$ homotopy groups vanish identically.
- X is path-connected \iff X is 0-connected.
- X is simply connected \iff X is 1-connected.
- X is contractible \iff the identity map on X is null-homotopic.
- X is contractible \implies X is n-connected for any n.

Observation

- Let $P \subseteq [0, 1]$ be a Π^0_1 set without computable points.
- $P^{(n+2)} \subseteq [0, 1]^{n+2}$ is n-connected, but not $n + 1$-connected.
Introduction

Main Theorem

- X is \textit{n}-connected \iff the first $n + 1$ homotopy groups vanish identically.
- X is \textit{path}-connected \iff X is \textit{0}-connected.
- X is \textit{simply connected} \iff X is \textit{1}-connected.
- X is \textit{contractible} \iff the identity map on X is null-homotopic.
- X is contractible \implies X is \textit{n}-connected for any n.

Observation

- Let $P \subseteq [0, 1]$ be a Π_1^0 set without computable points.
- $P^{(n+2)} \subseteq [0, 1]^{n+2}$ is n-connected, but not $n + 1$-connected.
- $P^{(n)}$ is not contractible for any n.

Takayuki Kihara

Incomputability of Simply Connected Planar Continua
Observation (Restated)

- Not every nonempty n-connected Π^0_1 set in \mathbb{R}^{n+2} contains a computable point, for any $n \in \mathbb{N}$.
Observation (Restated)

- Not every nonempty n-connected Π^0_1 set in \mathbb{R}^{n+2} contains a computable point, for any $n \in \mathbb{N}$.
- Every nonempty n-connected Π^0_1 set in \mathbb{R}^{n+1} contains a computable point, for $n = 0$.

Takayuki Kihara

Incomputability of Simply Connected Planar Continua
Observation (Restated)

- Not every nonempty n-connected Π^0_1 set in \mathbb{R}^{n+2} contains a computable point, for any $n \in \mathbb{N}$.
- Every nonempty n-connected Π^0_1 set in \mathbb{R}^{n+1} contains a computable point, for $n = 0$.

Question

1. (Le Roux-Ziegler) Does every simply connected planar Π^0_1 set contain a computable point?
2. Does every contractible Euclidean Π^0_1 set contain a computable point?
Observation (Restated)

- Not every nonempty \(n \)-connected \(\mathcal{P}_1^0 \) set in \(\mathbb{R}^{n+2} \) contains a computable point, for any \(n \in \mathbb{N} \).
- Every nonempty \(n \)-connected \(\mathcal{P}_1^0 \) set in \(\mathbb{R}^{n+1} \) contains a computable point, for \(n = 0 \).

Question

1. (Le Roux-Ziegler) Does every simply connected planar \(\mathcal{P}_1^0 \) set contain a computable point?
2. Does every contractible Euclidean \(\mathcal{P}_1^0 \) set contain a computable point?

Main Theorem

Not every nonempty contractible planar \(\mathcal{P}_1^0 \) set contains a computable point.
Main Theorem

Not every nonempty contractible planar Π^0_1 set contains a computable point.
Main Theorem

Not every nonempty contractible planar Π^0_1 set contains a computable point.

Proof Idea

- Let $P \subseteq \mathbb{R}$ be a Π^0_1 set without computable points.
Main Theorem

Not every nonempty contractible planar \mathcal{P}_1^0 set contains a computable point.

Proof Idea

- Let $P \subseteq \mathbb{R}$ be a \mathcal{P}_1^0 set without computable points.
- Stretch $[0, 1] \times P$ along a stray snake A whose destination is a fixed incomputable point (i.e., A is Miller’s computable arc whose end-point is an incomputable left-c.e. real).
Main Theorem

Not every nonempty contractible planar Π^0_1 set contains a computable point.

Proof Idea

- Let $P \subseteq \mathbb{R}$ be a Π^0_1 set without computable points.
- Stretch $[0, 1] \times P$ along a stray snake A whose destination is a fixed incomputable point (i.e., A is Miller’s computable arc whose end-point is an incomputable left-c.e. real).
- All path-component of $[0, 1] \times P$ will be bundled at the destination end-point.
Main Theorem

Not every nonempty contractible planar Π^0_1 set contains a computable point.

Proof Idea

- Let $P \subseteq \mathbb{R}$ be a Π^0_1 set without computable points.
- Stretch $[0, 1] \times P$ along a stray snake A whose destination is a fixed incomputable point (i.e., A is Miller’s computable arc whose end-point is an incomputable left-c.e. real).
- All path-component of $[0, 1] \times P$ will be bundled at the destination end-point.
- Thus, the desired Π^0_1 set will be homeomorphic to the Cantor fan.
Proof Idea

Stretch $[0, 1] \times P$ along a *stray snake* A.

A snake A

Destination of the snake (incomputable point)

$([0, 1] \times P)$

(Cantor fan)

The desired Π_1^0 set D will be homeomorphic to the Cantor fan.
A fat approximation of Cantor set:

A construction of Cantor set

Fat approx. of Cantor set

- - - -
- - - -
- - - -

- - - -
- - - -
- - - -

P: a Π^0_1 subset of Cantor set.
P_s: a fat approximation of P at stage s.
I_s, r_s: the leftmost and rightmost of P_s.
A fat approximation of Cantor set:

<table>
<thead>
<tr>
<th>A construction of Cantor set</th>
<th>Fat approx. of Cantor set</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- \(P \): a \(\Pi^0_1 \) subset of Cantor set.
- \(P_s \): a fat approximation of \(P \) at stage \(s \).
- \(l_s, r_s \): the leftmost and rightmost of \(P_s \).
- \([l_s, l_{s+1}] \cap P_s, [r_{s+1}, r_s] \cap P_s \) contains intervals \(l^l_s, l^r_s \).
A fat approximation of Cantor set:

<table>
<thead>
<tr>
<th>A construction of Cantor set</th>
<th>Fat approx. of Cantor set</th>
</tr>
</thead>
<tbody>
<tr>
<td>________</td>
<td>________________________</td>
</tr>
<tr>
<td>___ ___</td>
<td>___ ___</td>
</tr>
<tr>
<td>___ ___ ___</td>
<td>___ ___ ___</td>
</tr>
<tr>
<td>___ ___ ___</td>
<td>___ ___ ___</td>
</tr>
</tbody>
</table>

- P: a Π^0_1 subset of Cantor set.
- P_s: a fat approximation of P at stage s.
- l_s, r_s: the leftmost and rightmost of P_s.
- $[l_s, l_{s+1}] \cap P_s, [r_{s+1}, r_s] \cap P_s$ contains intervals I^l_s, I^r_s.
- We call these intervals $I^l_s, I^r_s \subseteq P_s \setminus P_{s+1}$ free blocks.
Prepare a stretched Π^0_1 class $D_0^- = P \times [0, 1]$.

- $P \subseteq \mathbb{R}^1$: a Π^0_1 set without computable points.
- P_s: a fat approximation of P (Note that $P = \bigcap_s P_s$).
- $D_0^- = [0, 1] \times P_0$.
\(D_0 \) is the following connected closed set.

\[
\begin{array}{c}
\text{Free block} \\
\text{Body} \\
\text{Free block}
\end{array}
\]

The desired \(\Pi^0_1 \) set \(D \) will be obtained by carving \(D_0 \).
There is a computable sequence \(\{J_s\} \) of rational open intervals s.t.

- \(\min J_s \to \alpha \) as \(s \to \infty \).
- \(\text{diam}(J_s) \to 0 \) as \(s \to \infty \).
- Either \(J_{s+1} \subset J_s \) or \(\max J_s < \min J_{s+1} \), for each \(s \).
Our construction starts with D_0.

Stretched

Free block

Body

Free block
By carving free blocks, stretch P_0 toward $\max J_0$.
By carving free blocks, stretch P_0 toward $\min J_0$.

\[\min J_0 \]
Proceed one step with a fat approximation of P.

$$\min J_0 \quad \max J_0$$
D_1 is defined by this,
D_1 is defined by this,

- If $J_1 \subset J_0$, then the construction of D_2 is similar as that of D_1.
- i.e., on the top block, stretch toward $\max J_1$ and back to $\min J_1$, by caving free blocks.
D_1 is defined by this,

- If $J_1 \subset J_0$, then the construction of D_2 is similar as that of D_1.
- i.e., on the top block, stretch toward $\max J_1$ and back to $\min J_1$, by caving free blocks.
D_1 is defined by this,

- If $J_1 \subset J_0$, then the construction of D_2 is similar as that of D_1.
- i.e., on the top block, stretch toward $\max J_1$ and back to $\min J_1$, by caving free blocks.
- In general, similar for $J_{s+1} \subset J_s$.
D_1 is defined by this,

If $J_1 \subset J_0$, then the construction of D_2 is similar as that of D_1.

i.e., on the top block, stretch toward $\max J_1$ and back to $\min J_1$, by caving free blocks.

In general, similar for $J_{s+1} \subset J_s$.

Only the problem is the case of $J_{s+1} \not\subset J_s$!
In the case of $J_{s+1} \notin J_s$:

Overview of D_s (above D_p)

Pick the greatest $p \leq s$ such that $J_{s+1} \subset J_p$.

Takayuki Kihara
Incomputability of Simply Connected Planar Continua
In the case of $J_{s+1} \not\subset J_s$:

Overview of D_s (above D_p)

Go back to D_p by caving free blocks into the shape of P.
Overview of D_s (above D_p)

By caving free blocks on D_p into the shape of P, stretch toward $\max J_{s+1}$ and back to $\min J_{s+1}$.
Main Theorem (Restated)

Not every nonempty contractible planar \(\Pi_1^0 \) set contains a computable point.

\[D = \bigcap_s D_s \text{ is } \Pi_1^0. \]
Main Theorem (Restated)

Not every nonempty contractible planar Π_1^0 set contains a computable point.

- $D = \bigcap_s D_s$ is Π_1^0.
- D is obtained by bundling $[0, 1] \times P$ at $(\alpha, y) \in \mathbb{R}^2$ for some y.
Main Theorem (Restated)

Not every nonempty contractible planar Π_1^0 set contains a computable point.

- $D = \bigcap_s D_s$ is Π_1^0.
- D is obtained by bundling $[0, 1] \times P$ at $(\alpha, y) \in \mathbb{R}^2$ for some y.
- D is path-connected by the property of an approximation $\{J_s\}$ of the incomputable left-c.e. real α.
Main Theorem (Restated)

Not every nonempty contractible planar \mathcal{N}_1^0 set contains a computable point.

- $D = \cap_s D_s$ is \mathcal{N}_1^0.
- D is obtained by bundling $[0, 1] \times P$ at $(\alpha, y) \in \mathbb{R}^2$ for some y.
- D is path-connected by the property of an approximation $\{J_s\}$ of the incomputable left-c.e. real α.
- Therefore, D is homeomorphic to Cantor fan, and contractible.
Main Theorem (Restated)

Not every nonempty contractible planar Π_1^0 set contains a computable point.

- $D = \bigcap_s D_s$ is Π_1^0.
- D is obtained by bundling $[0, 1] \times P$ at $(\alpha, y) \in \mathbb{R}^2$ for some y.
- D is path-connected by the property of an approximation $\{J_s\}$ of the incomputable left-c.e. real α.
- Therefore, D is homeomorphic to Cantor fan, and contractible.
- Stretching $[0, 1] \times P$ cannot introduce new computable points.
Main Theorem (Restated)

Not every nonempty contractible planar \(\mathcal{N}_1 \) set contains a computable point.

- \(D = \bigcap_s D_s \) is \(\mathcal{N}_1^0 \).
- \(D \) is obtained by bundling \([0, 1] \times P\) at \((\alpha, y) \in \mathbb{R}^2\) for some \(y \).
- \(D \) is path-connected by the property of an approximation \(\{J_s\} \) of the incomputable left-c.e. real \(\alpha \).
- Therefore, \(D \) is homeomorphic to Cantor fan, and contractible.
- Stretching \([0, 1] \times P\) cannot introduce new computable points.
- Of course, \((\alpha, y)\) is also incomputable.
Main Theorem (Restated)

Not every nonempty contractible planar Π_1^0 set contains a computable point.

- $D = \bigcap_s D_s$ is Π_1^0.
- D is obtained by bundling $[0, 1] \times P$ at $(\alpha, y) \in \mathbb{R}^2$ for some y.
- D is path-connected by the property of an approximation $\{J_s\}$ of the incomputable left-c.e. real α.
- Therefore, D is homeomorphic to Cantor fan, and contractible.
- Stretching $[0, 1] \times P$ cannot introduce new computable points.
- Of course, (α, y) is also incomputable.
- Hence, D has no computable points.
Corollary

For every \(\Pi^0_1 \) class \(P \), there is a contractible planar \(\Pi^0_1 \) set \(D \) such that \(D \) is Turing-degree-isomorphic to \(P \).
Corollary
For every Π^0_1 class P, there is a contractible planar Π^0_1 set D such that D is Turing-degree-isomorphic to P.

Definition (RCA_0)
A sequence $(B_i)_{i \in \mathbb{N}}$ of open rational balls is disk-like if $\bigcup_{i < n} B_i$ is homeomorphic to $(0, 1)^2$ for any $n \in \mathbb{N}$.

Corollary
The following are equivalent over RCA_0:
- **WKL$_0$**: Every infinite tree has a path;
- **Heine-Borel**: Every covering of $[0, 1]$ has a finite subcovering.
- **Heine-Borel(Disk)**: Every disk-like covering of $[0, 1]^2$ has a finite subcovering.
Question

- What about Medvedev degrees of contractible planar Π_1^0 sets?
- Does every nonempty locally connected planar Π_1^0 set contain a computable point?
Thank you!