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Introduction

Uncertainty situations are traditionally modeled by prob-
ability theory.

In risk theory there are 2 important problems:

(I) when a risk situation is riskier than others

(II) if 2 agents face a risk situation when we can say
that an agent is more risk averse than another

Risk situations are represented by random variables, and
the attitude of an agent towards risk is represented by
a utility function.

Possibility theory (Zadeh 1978) is an alternative to prob-
ability theory in the treatment of situations of uncer-
tainty (in particular, risk situations).

The transition from probabilistic models to possibilistic
models is done by:

• random variables are replaced with possibility distribu-
tions

• probabilistic indicators are replaced with possibilistic
indicators

• probabilistic expected value → possibilistic ex-
pected value

• probabilistic variance → possibilistic variance

• probabilistic covariance → possibilistic covariance
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Fuzzy numbers are the most studied class of possibility
distributions.

For fuzzy numbers there is one notion of expected value,
but several notions of variance and covariance.

The objectives of this paper are:

• the introduction of expected utility operators as an
abstract framework in the treatment of possibilistic vari-
ances and covariances

• to develop a theory of risk aversion in this abstract
framework (problem II)
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Fuzzy Numbers

A fuzzy subset of R is a function A : R → [0, 1]. The
support of a fuzzy subset A of R is supp(A) = {x ∈
R|A(x) > 0}.

Let γ ∈ [0,1]. The γ–level set [A]γ of A is defined by

[A]γ =

{
{x ∈ R|A(x) ≥ γ} if γ > 0

cl(supp(A)) if γ = 0

(cl(supp(A)) is the topological closure of supp(A).)

A fuzzy subset A of R is called fuzzy number if it verifies
the following conditions:

• A : R → [0, 1] is a continuous function;

• A is normal, i.e. A(x) = 1 for some x ∈ R;

• A is fuzzy convex, i. e. [A]γ is convex for any γ ∈ [0,1];

• supp(A) is a bounded subset of R.

If A is a fuzzy number, then for any γ ∈ [0,1], [A]γ is a
compact and convex subset of R. Then any γ–level set
of A has the form [A]γ = [a1(γ), a2(γ)], γ ∈ [0,1].

Let A, B be two fuzzy numbers and λ ∈ R. Then the
fuzzy numbers A + B and λA are defined using Zadeh’s
extension principle :

(A + B)(z) = sup{A(x) ∧B(y)|x + y = z} for any z ∈ R
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(λA)(y) = sup{A(x)|λx = y} for any y ∈ R.

Assume that [A]γ = [a1(γ), a2(γ)] and [B]γ = [b1(γ), b2(γ)]
for any γ ∈ [0,1]. Then

[A + B]γ = [a1(γ) + b1(γ), a2(γ) + b2(γ)]

[λA]γ = [λa1(γ), λa2(γ)] if λ ≥ 0 and [λA]γ = [λa2(γ), λa1(γ)]
if λ < 0.

A triangular fuzzy number A = (a, α, β), with a ∈ R and
α, β ≥ 0 is defined by

A(t) =


1− a−t

α
if a− α ≤ t ≤ a

1− t−a
β

if a ≤ t ≤ a + β

0 otherwise
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Indicators of fuzzy numbers

A function f : [0,1] → R is a weighting function if it
is non–negative, monotone increasing and verifies the
normality condition

∫ 1
0 f(γ)dγ = 1.

Let A be a fuzzy number such that [A]γ = [a1(γ), a2(γ)]
for any γ ∈ [0,1]. According to [9] the f–weighted pos-
sibilistic expected value of A is defined by

E(f, A) =
1

2

∫ 1

0
[a1(γ) + a2(γ)]f(γ)dγ. (1)

For f(γ) = 2γ, γ ∈ [0,1], E(f, A) is the possibilistic
mean value of [2].

We introduce now three notions of f–weighted possi-
bilistic variances:

V ar1(f, A) =
1

12

∫ 1

0
[a2(γ)− a1(γ)]2f(γ)dγ (2)

V ar2(f, A) =
1

2

∫ 1

0
([a1(γ)−E(f, A)]2+[a2(γ)−E(f, A)]2)f(γ)dγ

(3)
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V ar3(f, A) =

∫ 1

0
[

1

a2(γ)− a1(γ)

∫ a2(γ)

a1(γ)
(x−E(f, A))2dx]f(γ)dγ

(4)

Remark 1 V ar1(f, A) and V ar2(f, A) are generalizations
of the two variances V ar(A) and V ar′(A) introduced
by Carlsson and Fullér in [2] for f(γ) = 2γ, γ ∈ [0,1].
V ar1(f, A) was originally introduced by Fullér and Ma-

jlender in [9] as 1
4

∫ 1
0 [a2(γ) − a1(γ)]f(γ)dγ and in form

(2) by Carlsson, Fullér and Majlender in [5]. V ar2(f, A)
appears in [18] and V ar3(f, A) in [10].

In [10] the following calculation formulas for V ar3(f, A)
were proved.

V ar3(f, A) =
1

3

∫ 1

0
[a2

1(γ)+a2
2(γ)+a1(γ)a2(γ)]f(γ)dγ−E2(f, A)

(5)

V ar3(f, A) = 4V ar1(f, A)−E2(f, A)+

∫ 1

0
a1(γ)a2(γ)f(γ)dγ

(6)
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The following calculation formula for V ar2(f, A) can be
established:

V ar2(f, A) =
1

2

∫ 1

0
[a2

1(γ) + a2
2(γ)]f(γ)dγ − E2(f, A) (7)

Applying (5)–(7) the following relation is obtained

V ar3(f, A) = V ar2(f, A)− 2V ar1(f, A) (8)
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Expected utility operators

We define the notion of expected utility operator and
variance associated with it.

Let F be the set of fuzzy numbers and C(R) the set of
continuous functions g : R → R. We consider a subset
U of C(R) with the properties:

(U1) U contains constant functions and first and second
order polynomial functions.

(U2) If α, β ∈ R and g, h ∈ U then αg + βh ∈ U.

We fix a weighting function f and a family of functions
U with properties (U1) and (U2).

If λ ∈ R then we denote with λ̄ : R → R the constant
function taking value λ.

Definition 2 An (f–weighted) expected utility operator
is a function T : F × U → R such that for any λ, µ ∈ R,
g, h ∈ U and A ∈ F the following properties take place:

(a) T (A, 1R) = E(f, A); (b) T (A, λ̄) = λ; (c) T (A, λg +
µh) = λT (A, g) + µT (A, h); (d) If g ≤ h then T (A, g) ≤
T (A, h).

The real number T (A, g) is called generalized possibilis-
tic expected utility of A with respect to f and g.

T (A, λg+µ) = λT (A, g)+µ follows from axioms (b) and
(c). In particular we have T (A,−g) = −T (A, g).
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Definition 3 We consider the function g(x) = (x −
E(f, A))2 for any x ∈ R. Then the T–variance V arT(A)
of A is defined by V arT(A) = T (A, g).

Since g ≥ 0, V arT(A) ≥ 0 follows from axiom (d).

Example 4 Let U = C(R). For any g ∈ C(R) we denote

E2(f, g(A)) =
1

2

∫ 1

0
[g(a1(γ)) + g(a2(γ))]f(γ)dγ (9)

The function T2 : F × C(R) → R defined by T2(A, g) =
E2(f, g(A)) for any A ∈ F and g ∈ C(R) is an expected
utility operator. The variance associated with T2 is

V arT2
(A) = V ar2(f, A) (10)
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Example 5 For any g ∈ C(R) we denote

E3(f, g(A)) =

∫ 1

0
[

1

a2(γ)− a1(γ)

∫ a2(γ)

a1(γ)
g(x)dx]f(γ)dγ

(11)

In some cases the right hand side member of (11) can
take infinite value. Let U3 be the set of functions g ∈
C(R) for which the integral of (11) is finite. U3 verifies
(U1) and (U2). The function T3 : F ×U3 → R defined by
T3(A, g) = E3(f, g(A)) for any A ∈ F and g ∈ U3 is an
expected utility operator and V arT3

(A) = V ar3(f, A).

Proposition 6 If T, S are expected utility operators and
α, β are two real numbers with α + β = 1 then U =
αT + βS is an expected utility operator and V arU(A) =
αV arT(A) + βV arS(A).

Open problem Is there any expected utility operator T1

such that V arT1
(A) = V ar1(f, A) for any A ∈ F?
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Possibilistic covariances

In this section we will associate a possibilistic covariance
with each expected utility operator. Various possibilistic
covariances from [5], [9], [10], [19] will be found as
particular cases.

Let f be a weighting function and T : F × U → R be
an expected utility operator. We consider two fuzzy
numbers A, B such that [A]γ = [a1(γ), a2(γ)] and [B]γ =
[b1(γ), b2(γ)] for any γ ∈ [0,1].

In [5] the following possibilistic covariances were intro-
duced:

Cov1(f, A, B) = 1
12

∫ 1
0 [a2(γ)− a1(γ)][b2(γ)− b1(γ)]f(γ)dγ

Cov2(f, A, B) = 1
2

∫ 1
0 [(a1(γ)−E(f, A))(b1(γ)−E(f, B))+

(a2(γ)− E(f, A))(b2(γ)− E(f, B))]f(γ)dγ

Obviously V ar1(f, A) = Cov1(f, A, A) and V ar2(f, A) =
Cov2(f, A, A).

Proposition 7 (i) Cov2(f, A, B) = 1
2

∫ 1
0 [a1(γ)b1(γ)+a2(γ)b2(γ)]

f(γ)dγ − E(f, A)E(f, B)

(ii) Cov2(f, A, B) = 6Cov1(f, A, B) − E(f, A)E(f, B) +
1
2

∫ 1
0 [a1(γ)b2(γ) + a2(γ)b1(γ)]f(γ)dγ
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Equality (8) from Section 3 suggests a third possibilistic
covariance

Cov3(f, A, B) = Cov2(f, A, B)− 2Cov1(f, A, B)

One notices that V ar3(f, A) = Cov3(f, A, A).

Proposition 8 Cov3(f, A, B) = 4Cov1(f, A, B)−E(f, A)E(f, B)+
1
2

∫ 1
0 [a1(γ)b2(γ) + a2(γ)b1(γ)]f(γ)dγ

Proposition 9 V ari(f, A+B) = V ari(f, A)+V ari(f, B)+
2Covi(f, A, B), i = 1,2,3

Definition 10 The T–covariance CovT(A, B) of fuzzy
numbers A and B is defined by

CovT(A, B) =
1

2
[V arT(A+B)−V arT(A)−V arT(B)] (12)

Since A + B = B + A from (12) we get CovT(A, B) =
CovT(B, A).

In the following we will compute the T–covariances cor-
responding to expected utility operators T2 and T3 de-
fined in the previous section.

Proposition 11 Let T2 be the expected utility operator
from Example 4. Then

CovT2
(A, B) = Cov2(f, A, B) (13)

Proposition 12 CovT2
(A, B) = 1

2

∫ 1
0 [a1(γ)b1(γ)+a2(γ)b2(γ)]

f(γ)dγ − E(f, A)E(f, B)

12



Proposition 13 Let T3 be the expected utility operator
from Example 5. Then

CovT3
(A, B) = 4Cov1(f, A, B)−E(f, A)E(f, B)+1

2

∫ 1
0 [a1(γ)b2(γ)

+a2(γ)b1(γ)]f(γ)dγ

Proposition 14 CovT3
(A, B) = Cov3(f, A, B)

Proposition 15 Let T, S be two expected utility oper-
ators and α, β ∈ R such that α + β = 1. If U = αT + βS
then CovU(A, B) = αCovT(A, B) + βCovS(A, B).

Let f be a weighting function and T : F × U → R be an
expected utility operator. If g : R → R is the function
g(x) = x2 for any x ∈ R then we denote T (A, g) =
T (A, x2).

Lemma 16 For any fuzzy number A, V arT(A) = T (A, x2)−
E2(f, A).

In general the equality V arT(A) = CovT(A, A) is not true.
The following result characterizes those expected utility
operators for which this equality is true.

Proposition 17 The following assertions are equiva-
lent:

(i) For any A ∈ F, T (2A, x2) = 4T (A, x2)

(ii) For any A ∈ F, V arT(2A) = 4V arT(A)

(iii) For any A ∈ F, V arT(A) = CovT(A, A)
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Remark 18 Expected utility operators T2, T3 verify the
equivalent properties of the previous proposition.

Proposition 19 The following assertions are equiva-
lent:

(i) For any A, B, C ∈ F, CovT(A + B, C) = CovT(A, C) +
CovT(B, C);

(ii) For any A, B, C ∈ F, V arT(A + B + C) = V arT(A +
B)+V arT(B +C)+V arT(C +A)−V arT(A)−V arT(B)−
V arT(C);

(iii) For any A, B, C ∈ F, T (A + B + C, x2) = T (A +
B, x2)+T (B+C, x2)+T (C+A, x2)−T (A, x2)−T (B, x2)−
T (C, x2).

Open problem Is there any expected utility operator T1

such that CovT1
(A, B) = Cov1(f, A, B) for any A, B ∈ F?
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Possibilistic risk aversion

Probability theory of risk aversion (Arrow [1], Pratt [15])
has as central notion the risk premium. the risk premium
is ”the maximum amount by which the agent is willing
to decrease the expected return from the lottery ticket
to have a sure return” ([12], p. 19).

In papers [10], [11] 2 notions of possibilistic risk pre-
mium were introduced, based on 2 notions of possibilis-
tic expected utility.

In this section we will define a notion of possibilistic risk
premium in an abstract framework determined by the
following elements:

• a weighting function f : [0,1] → R

• an expected utility operator T : F × U → R

• a fuzzy number A

• a utility function u : R → R twice differentiable, strictly
concave and strictly increasing

Definition 20 The possibilistic risk premium ρ = ρ(f, T, A, u)
associated with the quadruple (f, T, A, u) is defined by

(1) u(E(f, A)− ρ) = T (A, u)

Since the utility function u is injective, the possibilistic
risk premium ρ is uniquely determined by (1).
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Remark 21 The presence of the expected utility op-
erator T in Definition 20 confers an increased degree
of generality to the notion of possibilistic risk premium
ρ(f, T, A, u). By the particularization of T various types
of possibilistic risk premiums result.

If T = T2 we obtain the possibilistic risk premium from
[10] and if T = T3 we obtain the possibilistic risk pre-
mium from [11].

The possibilistic risk premium is an indicator of risk aver-
sion of an agent represented by u in front of a situation
of uncertainty characterized by the fuzzy number A.

Proposition 22 An approximate solution of (1) is given
by

(2) ρ ≈ −1
2
V arT(A)u′′(E(f,A))

u′(E(f,A))

Example 23 Assuming T = T2, equation (1) becomes

(3) u(E(f, A)− ρ) = E2(f, u(A)).

By Proposition 22 and Example 4 the approximate so-
lution ρ2 of equation (3) has the form

(4) ρ2 ≈ −1
2
V ar2(f, A)u′′(E(f,A))

u′(E(f,A))

16



Example 24 Assuming T = T3, equation (1) becomes

(5) u(E(f, A)− ρ) = E3(f, u(A)).

By Proposition 22 and Example 5 the approximate so-
lution ρ3 of equation (5) has the form

(6) ρ3 ≈ −1
2
V ar3(f, A)u′′(E(f,A))

u′(E(f,A))
.

Let T, S be two expected utility operators and U = αT +
βS with α + β = 1. We write equation (1) for T, S and
u:

u(E(f, A)− ρ) = T (A, u)

u(E(f, A)− ρ) = S(A, u)

u(E(f, A)− ρ) = U(A, u)

Let ρT , ρS, ρU be the approximate solutions of the three
equations given by Proposition 22.

Proposition 25 ρU ≈ αρT + βρS.
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