
Jump classes and automorphisms
of the c.e. sets

Rachel Epstein

Department of Mathematics
Harvard University

June 30, 2011
CIE - Sofia, Bulgaria

1



Computably enumerable sets

Definition
A set A is computably enumerable (c.e.) if it is the domain We
of a partial computable function Φe.

Equivalently:

A is Σ0
1.

There is a computable listing of the elements in A.

A is the range of a computable function (or empty).

A ≤1 K , where K is the halting set {e : e ∈We}.
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Definition
Low= L1 = {d | d′ = 0′}.

High = H1 = {d | d′ = 0′′}.

Definition

Lown = Ln = {d | d(n) = 0(n)}

Highn = Hn = {d | d(n) = 0(n+1)}

Sacks proved the Jump Inversion Theorem, which led to
the following corollary:

Corollary
0 = L0 ( L1 ( L2 ( L3 ( . . ., and

0′ = H0 ( H1 ( H2 ( H3 . . . within the c.e. degrees.
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Definition
Let E be the lattice of the c.e. sets: E = {{We}e∈ω,∪,∩, ω, ∅}.

A class of c.e. sets is definable in E if it can be defined in
the language of set inclusion.

Computable sets = complemented sets.

Finite sets F = {W ∈ E | (∀X ⊂W )[X is computable]}.

Let E∗ = E/F .
For our purposes, anything we want to say about E , we can
prove about E∗ instead.

5



Definition
Let E be the lattice of the c.e. sets: E = {{We}e∈ω,∪,∩, ω, ∅}.

A class of c.e. sets is definable in E if it can be defined in
the language of set inclusion.

Computable sets = complemented sets.

Finite sets F = {W ∈ E | (∀X ⊂W )[X is computable]}.

Let E∗ = E/F .
For our purposes, anything we want to say about E , we can
prove about E∗ instead.

5



Definition
Let E be the lattice of the c.e. sets: E = {{We}e∈ω,∪,∩, ω, ∅}.

A class of c.e. sets is definable in E if it can be defined in
the language of set inclusion.

Computable sets = complemented sets.

Finite sets F = {W ∈ E | (∀X ⊂W )[X is computable]}.

Let E∗ = E/F .
For our purposes, anything we want to say about E , we can
prove about E∗ instead.

5



Definition
Let E be the lattice of the c.e. sets: E = {{We}e∈ω,∪,∩, ω, ∅}.

A class of c.e. sets is definable in E if it can be defined in
the language of set inclusion.

Computable sets = complemented sets.

Finite sets F = {W ∈ E | (∀X ⊂W )[X is computable]}.

Let E∗ = E/F .
For our purposes, anything we want to say about E , we can
prove about E∗ instead.

5



Definition
Let E be the lattice of the c.e. sets: E = {{We}e∈ω,∪,∩, ω, ∅}.

A class of c.e. sets is definable in E if it can be defined in
the language of set inclusion.

Computable sets = complemented sets.

Finite sets F = {W ∈ E | (∀X ⊂W )[X is computable]}.

Let E∗ = E/F .
For our purposes, anything we want to say about E , we can
prove about E∗ instead.

5



Definition
We say a class of degrees C is definable if
C = {deg(W ) |W ∈ S} where S is a class of sets definable
in E .

Question
Which classes of degrees are definable in E?

Question

Which jump classes (Ln, Hn, Ln, Hn) are definable in E?

(It suffices to show which are definable in E∗ [Lachlan])

L0 = {0}: Definable by {deg(∅)}.

L0 = {d | d > 0}: Definable by {deg(W ) |W /∈ E}.
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Definition
A set A is maximal if A∗ is a coatom of E∗, i.e. if for all e,

A ⊂We =⇒ We =∗ A or We =∗ ω.

Theorem (Martin, 1966)
H1 = the degrees of maximal sets.
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Definition
A set A is atomless if it is not contained in any maximal set.

Lachlan [1968]: The atomless sets are contained in the
class L2.

Shoenfield [1976]: Every degree in L2 contains an
atomless set.

Thus, L2 = {deg(A) | A atomless}.
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Known results in 1986

Red = Definable Blue = Not definable

L0= {0}

L0= {d | d > 0}

H0= {0′}: Definable because the creative sets are
definable [Harrington, 1986].

H1= {d | d′ = 0′′} by Martin

L2= {d | d′′ > 0′′} by Lachlan-Shoenfield
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Definition
A class of sets S ⊆ E is invariant if it is closed under Aut(E). A
class of degrees C is invariant if C = {deg(W ) |W ∈ S}, where
S is invariant.

Definable classes are invariant.

To show a class is not definable, we show it is noninvariant.
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Theorem (Cholak 1995, Harrington-Soare 1996)
Every noncomputable c.e. set is automorphic to a high set.

Corollary

All downward closed jump classes Ln, Hn, n ≥ 1, are
noninvariant, and thus not definable.

Theorem (Harrington-Soare, 1996)

For all prompt sets A, there exists B ≡T 0′ such that A ' B.

Corollary

H0, the degrees below 0′, are not definable.
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The situation in 1996

Red = Definable Blue = Not definable

Upward Closed Downward Closed

nonlown highn lown nonhighn

L0 H0 L0 H0

L1 H1 L1 H1

L2 H2 L2 H2

L3 H3 L3 H3

...
...

...
...
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The situation in 2002

Theorem (Cholak-Harrington, 2002)

For n ≥ 2, Hn and Ln are definable.

Red = Definable Blue = Not definable

Upward Closed Downward Closed

nonlown highn lown nonhighn

L0 H0 L0 H0

L1 H1 L1 H1

L2 H2 L2 H2

L3 H3 L3 H3

...
...

...
...
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Conjecture (Harrington-Soare, 1996)

L1 is noninvariant.

Theorem (Epstein)

L1 is noninvariant, and thus not definable.

Red = Definable Blue = Not definable

Upward Closed

nonlown highn

L0 H0

L1 H1

L2 H2

L3 H3

...
...
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Theorem (Epstein)
There exists a nonlow D such that for all A ≤T D, there exists a
low set B such that A ' B.

Corollary (Epstein)
The nonlow degrees are noninvariant, and thus not definable.

Proof: Let d = deg(D). Then d is an L1 degree such that all
sets in d are automorphic to low sets.

D must be L2.

We will focus on a single set A = ΨD.
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Building an automorphism

Red = Things we are given Blue = Things we build

Given an enumeration {Un}n∈ω of the c.e. sets, where
U0 = A.

Build an enumeration {Ûn}n∈ω of the c.e. sets. Let B = Û0.

We build Ûn so that Θ : Un 7→ Ûn is an automorphism.
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Recall:

Theorem (Harrington-Soare, 1996)

For all prompt sets A, there exists B ≡T 0′ such that A ' B.

Theorem (Cholak 1995, Harrington-Soare 1996)
For all noncomputable A, there exists B high such that A ' B.

These theorems move sets up in degree. We move sets down.

The Harrington-Soare machinery is inflexible.

It does not allow us to restrain elements from falling into A.
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We must build an automorphism taking A ≤T D down to a
low set B.

We restrain B to make it low, so we must also restrain A.
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This guarantees that no state is emptied by A.

This restraint is actually on D since we only control D.

Combining this with making D nonlow requires infinite
injury.
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Other automorphism questions

This proves that there is a nonlow degree whose lower cone
contains only sets automorphic to low sets.

Question
What else can we say about sets automorphic to low sets?

Theorem (Harrington-Soare, 1998)

There is a low2 promptly simple set A with A semi-low1.5 such
that A is not automorphic to a low set.
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We usually build ∆0
3 automorphisms of E∗

Which sets are ∆0
3-automorphic to low sets?

Conjecture (Cholak-Weber)

The sets with the ∆0
3-low shrinking property are precisely the

sets ∆0
3-automorphic to low sets.

Definition (Maass, 1985)

A has the (∆0
3)low shrinking property if for any enumeration

{We} of the c.e. sets, there is a computable (∆0
3) function f

such that

Wf (e) ⊆We & Wf (e) ∩ A =∗ We ∩ A,

and for all finite I ⊂ ω

A ∩
⋂
i∈I

Wf (i) infinite =⇒ A ∩
⋂
i∈I

Wf (i)infinite.
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Which sets are effectively automorphic to low sets?

Soare [1982] showed that all sets with semilow
complement are effectively automorphic to low sets, where
S is semilow if {e : We ∩ S 6= ∅} ≤T 0′.

Two conjectures:
A is effectively automorphic to a low set if A is semilow.
A is effectively automorphic to a low set if A has the low
shrinking property.

Which sets are automorphic to low sets in general?
This is a hard question!
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Question
Which sets are automorphic to complete sets?

All prompt sets are ∆0
3-automorphic to complete sets

(Harrington-Soare, 1996).

No known conjectures.
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Theorem (Harrington)

For all noncomputable c.e. sets A and all c.e. C <T 0′, there is
a c.e. set B 6≤T C such that A ' B.

Question (Avoiding an upper cone)

For all c.e. sets A < 0′ and noncomputable c.e. sets C, is there
a c.e. set B, C 6≤T B, such that A ' B?

Theorem (R. Miller, 2002)
True for A low.

Corollary (Epstein, R. Miller)
There exists a nonlow c.e. set D such that for all A ≤T D and all
C >T 0, there is a c.e. set B, C 6≤T B and A ' B.
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Thanks for listening!
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