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Computably enumerable sets

Definition

A set A is computably enumerable (c.e.) if it is the domain W,
of a partial computable function ®..

Equivalently:
e Ais 0.
@ There is a computable listing of the elements in A.
@ Ais the range of a computable function (or empty).

@ A <4 K, where K is the halting set {e : e € W,}.
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Definition
Low=L; ={d|d =0}

High = H; = {d | d’ = 0"}.

Definition

Low, = L, = {d | d(™ = 0(M}
High, = Hp, = {d | d™ = o(r+1)}

@ Sacks proved the Jump Inversion Theorem, which led to
the following corollary:

0:LOQL1nggL3g...,and

0= Hy € Hy € H> C Hs... within the c.e. degrees.
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Definition

Let £ be the lattice of the c.e. sets: £ = {{We}ecw, U, N, w, D}.

@ A class of c.e. sets is definable in £ if it can be defined in
the language of set inclusion.

@ Computable sets = complemented sets.
@ Finitesets F = {W e & | (VX C W)[X is computable]}.

o Let&* =¢&/F.
For our purposes, anything we want to say about £, we can
prove about £* instead.
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Definition
We say a class of degrees C is definable if
C = {deg(W) | W € S} where S is a class of sets definable

in €.

Which classes of degrees are definable in £ ? l
Which jump classes (Ln, Hn, Ln, Hy) are definable in £ ? \

(It suffices to show which are definable in £* [Lachlan])

@ Lo = {0}: Definable by {deg(0)}.
@ Lo = {d|d > 0}: Definable by {deg(W) | W ¢ £}.
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A set A is maximal if A* is a coatom of £*, i.e. if for all e,

AcW, — W,="A or We="w.

Theorem (Martin, 1966)
H; = the degrees of maximal sets.
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Definition
A set A is atomless if it is not contained in any maximal set.

@ Lachlan [1968]: The atomless sets are contained in the
class Lo.

@ Shoenfield [1976]: Every degree in L, contains an
atomless set.

@ Thus, L, = {deg(A) | A atomless}.



Known results in 1986

Red = Definable Blue = Not definable
® Lo={0}
@ [p={d|d>0}

@ Hy= {0'}: Definable because the creative sets are
definable [Harrington, 1986].

@ Hy={d|d' = 0"} by Martin

@ [,={d|d” > 0"} by Lachlan-Shoenfield
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Definition

A class of sets S C £ is invariant if it is closed under Aut(€). A
class of degrees C is invariant if C = {deg(W) | W € S}, where
S is invariant.

@ Definable classes are invariant.

@ To show a class is not definable, we show it is noninvariant.
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Theorem (Cholak 1995, Harrington-Soare 1996)
Every noncomputable c.e. set is automorphic to a high set.

All downward closed jump classes L, Hy, n > 1, are
noninvariant, and thus not definable.

Theorem (Harrington-Soare, 1996)

For all prompt sets A, there exists B =1 0’ such that A ~ B.

Ho, the degrees below 0', are not definable. \







The situation in 1996
Red = Definable Blue = Not definable

Upward Closed Downward Closed

nonlow, high, low, nonhigh,
Lo Ho Lo Ho
Ly H; Ly H;
[ Ho Lp H

Lg Hs L3 Ha



The situation in 2002

Theorem (Cholak-Harrington, 2002)
Forn> 2, H, and L, are definable.

Red = Definable Blue = Not definable
Upward Closed Downward Closed
nonlow, high, low, nonhighp,

Ly Ho Lo Ho
Ly H; Ly H;
Ly Ho Ly H
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Conjecture (Harrington-Soare, 1996)

L4 is noninvariant.

Theorem (Epstein)

L4 is noninvariant, and thus not definable.

Red = Definable

Blue = Not definable

Upward Closed

nonlow,

high,,

Lo
Ly
Ly
L3

Ho
H;
Ho
Hs
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Theorem (Epstein)

There exists a nonlow D such that for all A <t D, there exists a
low set B such that A ~ B.

Corollary (Epstein)
The nonlow degrees are noninvariant, and thus not definable.

Proof: Let d = deg(D). Then d is an L; degree such that all
sets in d are automorphic to low sets.

@ D must be L.

@ We will focus on a single set A = WP,




AV
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Building an automorphism

Red = Things we are given Blue = Things we build

@ Given an enumeration {U,} e, of the c.e. sets, where
Up = A

@ Build an enumeration {U;}new of the c.e. sets. Let B = U\o.

@ We build U; sothat® : U, — U; is an automorphism.
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Recall:

Theorem (Harrington-Soare, 1996)

For all prompt sets A, there exists B =1 0’ such that A ~ B.

Theorem (Cholak 1995, Harrington-Soare 1996)
For all noncomputable A, there exists B high such that A ~ B.

These theorems move sets up in degree. We move sets down.

@ The Harrington-Soare machinery is inflexible.

@ It does not allow us to restrain elements from falling into A.

29



@ We must build an automorphism taking A <t D down to a
low set B.
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@ We must build an automorphism taking A <t D down to a
low set B.

@ We restrain B to make it low, so we must also restrain A.
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@ We must build an automorphism taking A <t D down to a
low set B.

@ We restrain B to make it low, so we must also restrain A.

29
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@ This guarantees that no state is emptied by A.

2R



@ This guarantees that no state is emptied by A.

@ This restraint is actually on D since we only control D.
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@ This guarantees that no state is emptied by A.
@ This restraint is actually on D since we only control D.

@ Combining this with making D nonlow requires infinite
injury.

24



Other automorphism questions

This proves that there is a nonlow degree whose lower cone
contains only sets automorphic to low sets.

What else can we say about sets automorphic to low sets? \
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Other automorphism questions

This proves that there is a nonlow degree whose lower cone
contains only sets automorphic to low sets.

What else can we say about sets automorphic to low sets? l

Theorem (Harrington-Soare, 1998)

There is a low, promptly simple set A with A semi-low; 5 such
that A is not automorphic to a low set.

27



@ We usually build Ag automorphisms of £*
@ Which sets are Ag-automorphic to low sets?

Conjecture (Cholak-Weber)

The sets with the Ag -low shrinking property are precisely the
sets A-automorphic to low sets.

\

Definition (Maass, 1985)

A has the (Ag)/ow shrinking property if for any enumeration
{W,} of the c.e. sets, there is a computable (Ag) function f
such that

Wf(e) CWe & Wf(e) NA=* We N Z,
and for all finite / C w

AN () Wy infinite = AN (") Wy infinite.

iel iel

\

28



@ Which sets are effectively automorphic to low sets?
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@ Which sets are effectively automorphic to low sets?

@ Soare [1982] showed that all sets with semilow
complement are effectively automorphic to low sets, where
Sis semilowif {e : WenS#0} <1 0.

@ Two conjectures:

e Ais effectively automorphic to a low set if A is semilow.
o Ais effectively automorphic to a low set if A has the low
shrinking property.

@ Which sets are automorphic to low sets in general?
@ This is a hard question!

29



Which sets are automorphic to complete sets? I
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Which sets are automorphic to complete sets? I

@ All prompt sets are Ag-automorphic to complete sets
(Harrington-Soare, 1996).

20



Which sets are automorphic to complete sets? I

@ All prompt sets are Ag—automorphic to complete sets
(Harrington-Soare, 1996).

@ No known conjectures.

20



Theorem (Harrington)

For all noncomputable c.e. sets A and all c.e. C <1 0, there is
ac.e. set B £r C such that A ~ B.
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Theorem (Harrington)

For all noncomputable c.e. sets A and all c.e. C <1 0, there is
ac.e. set B £r C such that A ~ B.

Question (Avoiding an upper cone)

For all c.e. sets A < 0’ and noncomputable c.e. sets C, is there
ac.e. setB, C «£r B, such that A~ B?

Theorem (R. Miller, 2002)
True for A low.

Corollary (Epstein, R. Miller)

There exists a nonlow c.e. set D such that for all A <t D and all
C>710,thereisac.e.setB, C £r Band A ~ B.

1



@ R. Epstein,
The nonlow computably enumerable degrees are not
invariant, Trans. Amer. Math. Soc., to appear.

@ L. Harrington and R. I. Soare,
The Ag automorphism method and noninvariant classes of

degrees,
Jour. Amer. Math. Soc., 9 (1996), 617—666.

Thanks for listening!
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