Jump classes and automorphisms of the c.e. sets

Rachel Epstein

Department of Mathematics Harvard University

June 30, 2011 CIE - Sofia, Bulgaria

A set *A* is *computably enumerable* (c.e.) if it is the domain W_e of a partial computable function Φ_e .

Equivalently:

- A is Σ_1^0 .
- There is a computable listing of the elements in A.
- A is the range of a computable function (or empty).
- $A \leq_1 K$, where K is the halting set $\{e : e \in W_e\}$.

A set *A* is *computably enumerable* (c.e.) if it is the domain W_e of a partial computable function Φ_e .

Equivalently:

- A is Σ⁰₁.
- There is a computable listing of the elements in A.
- A is the range of a computable function (or empty).
- $A \leq_1 K$, where K is the halting set $\{e : e \in W_e\}$.

Low=
$$L_1 = \{ \mathbf{d} \mid \mathbf{d}' = \mathbf{0}' \}$$

High =
$$H_1 = \{ \mathbf{d} \mid \mathbf{d}' = \mathbf{0}'' \}.$$

Definition

Low_n =
$$L_n = \{ \mathbf{d} \mid \mathbf{d}^{(n)} = \mathbf{0}^{(n)} \}$$

High_n =
$$H_n = \{ \mathbf{d} \mid \mathbf{d}^{(n)} = \mathbf{0}^{(n+1)} \}$$

 Sacks proved the Jump Inversion Theorem, which led to the following corollary:

Corollary $\mathbf{0} = L_0 \subsetneq L_1 \subsetneq L_2 \subsetneq L_3 \subsetneq \dots$, and $\mathbf{0}' = H_0 \subsetneq H_1 \subsetneq H_2 \subsetneq H_3 \dots$ within the c.e. degrees.

Low=
$$L_1 = \{ \mathbf{d} \mid \mathbf{d}' = \mathbf{0}' \}$$
.

High
$$= H_1 = \{ \mathbf{d} \mid \mathbf{d}' = \mathbf{0}'' \}.$$

Definition

$$Low_n = L_n = \{ \mathbf{d} \mid \mathbf{d}^{(n)} = \mathbf{0}^{(n)} \}$$

High_n =
$$H_n = \{ \mathbf{d} \mid \mathbf{d}^{(n)} = \mathbf{0}^{(n+1)} \}$$

• Sacks proved the Jump Inversion Theorem, which led to the following corollary:

Corollary

$$\mathbf{0} = L_0 \subsetneq L_1 \subsetneq L_2 \subsetneq L_3 \subsetneq \dots$$
, and
 $\mathbf{0}' = H_0 \subsetneq H_1 \subsetneq H_2 \subsetneq H_3 \dots$ within the c.e. degrees.

Low=
$$L_1 = \{ \mathbf{d} \mid \mathbf{d}' = \mathbf{0}' \}$$
.

High
$$= H_1 = \{ \mathbf{d} \mid \mathbf{d}' = \mathbf{0}'' \}.$$

Definition

$$Low_n = L_n = \{ \mathbf{d} \mid \mathbf{d}^{(n)} = \mathbf{0}^{(n)} \}$$

High_n =
$$H_n = \{ \mathbf{d} \mid \mathbf{d}^{(n)} = \mathbf{0}^{(n+1)} \}$$

 Sacks proved the Jump Inversion Theorem, which led to the following corollary:

Corollary

$$\mathbf{0} = L_0 \subsetneq L_1 \subsetneq L_2 \subsetneq L_3 \subsetneq \ldots$$
, and

 ${\bf 0}'=H_0\subsetneq H_1\subsetneq H_2\subsetneq H_3\dots$ within the c.e. degrees.

Let \mathcal{E} be the lattice of the c.e. sets: $\mathcal{E} = \{\{W_e\}_{e \in \omega}, \cup, \cap, \omega, \emptyset\}.$

- A class of c.e. sets is definable in \mathcal{E} if it can be defined in the language of set inclusion.
- Computable sets = complemented sets.
- Finite sets $F = \{W \in \mathcal{E} \mid (\forall X \subset W) | X \text{ is computable} \}$.

Let \mathcal{E} be the lattice of the c.e. sets: $\mathcal{E} = \{\{W_e\}_{e \in \omega}, \cup, \cap, \omega, \emptyset\}.$

- A class of c.e. sets is definable in *E* if it can be defined in the language of set inclusion.
- Computable sets = complemented sets.
- Finite sets $F = \{W \in \mathcal{E} \mid (\forall X \subset W) | X \text{ is computable} \}$.

Let \mathcal{E} be the lattice of the c.e. sets: $\mathcal{E} = \{\{W_e\}_{e \in \omega}, \cup, \cap, \omega, \emptyset\}.$

- A class of c.e. sets is definable in *E* if it can be defined in the language of set inclusion.
- Computable sets = complemented sets.
- Finite sets $F = \{ W \in \mathcal{E} \mid (\forall X \subset W) [X \text{ is computable}] \}.$

• Let
$$\mathcal{E}^* = \mathcal{E}/F$$
.

For our purposes, anything we want to say about \mathcal{E} , we can prove about \mathcal{E}^* instead.

Let \mathcal{E} be the lattice of the c.e. sets: $\mathcal{E} = \{\{W_e\}_{e \in \omega}, \cup, \cap, \omega, \emptyset\}.$

- A class of c.e. sets is definable in *E* if it can be defined in the language of set inclusion.
- Computable sets = complemented sets.
- Finite sets $F = \{ W \in \mathcal{E} \mid (\forall X \subset W) [X \text{ is computable}] \}.$
- Let *ε*^{*} = *ε*/*F*.
 For our purposes, anything we want to say about *ε*, we can prove about *ε*^{*} instead.

Let \mathcal{E} be the lattice of the c.e. sets: $\mathcal{E} = \{\{W_e\}_{e \in \omega}, \cup, \cap, \omega, \emptyset\}.$

- A class of c.e. sets is definable in *E* if it can be defined in the language of set inclusion.
- Computable sets = complemented sets.
- Finite sets $F = \{W \in \mathcal{E} \mid (\forall X \subset W) | X \text{ is computable} \}$.
- Let $\mathcal{E}^* = \mathcal{E}/F$.

For our purposes, anything we want to say about \mathcal{E} , we can prove about \mathcal{E}^* instead.

We say a class of degrees C is *definable* if $C = \{ deg(W) \mid W \in S \}$ where S is a class of sets definable in E.

Question

Which classes of degrees are definable in \mathcal{E} ?

Question

Which jump classes $(L_n, H_n, \overline{L_n}, \overline{H_n})$ are definable in \mathcal{E} ?

- $L_0 = \{\mathbf{0}\}$: Definable by $\{\deg(\emptyset)\}$.
- $\overline{L_0} = \{ \mathbf{d} \mid \mathbf{d} > \mathbf{0} \}$: Definable by $\{ \deg(W) \mid \overline{W} \notin \mathcal{E} \}$.

We say a class of degrees C is *definable* if $C = \{ deg(W) \mid W \in S \}$ where S is a class of sets definable in E.

Question

Which classes of degrees are definable in \mathcal{E} ?

Question

Which jump classes $(L_n, H_n, \overline{L_n}, \overline{H_n})$ are definable in \mathcal{E} ?

- $L_0 = \{\mathbf{0}\}$: Definable by $\{\deg(\emptyset)\}$.
- $\overline{L_0} = \{ \mathbf{d} \mid \mathbf{d} > \mathbf{0} \}$: Definable by $\{ \deg(W) \mid \overline{W} \notin \mathcal{E} \}$.

We say a class of degrees C is *definable* if $C = \{ deg(W) \mid W \in S \}$ where S is a class of sets definable in E.

Question

Which classes of degrees are definable in \mathcal{E} ?

Question

Which jump classes $(L_n, H_n, \overline{L_n}, \overline{H_n})$ are definable in \mathcal{E} ?

- $L_0 = \{\mathbf{0}\}$: Definable by $\{ deg(\emptyset) \}$.
- $\overline{L_0} = \{ \mathbf{d} \mid \mathbf{d} > \mathbf{0} \}$: Definable by $\{ \deg(W) \mid \overline{W} \notin \mathcal{E} \}$.

We say a class of degrees C is *definable* if $C = \{ deg(W) \mid W \in S \}$ where S is a class of sets definable in E.

Question

Which classes of degrees are definable in \mathcal{E} ?

Question

Which jump classes $(L_n, H_n, \overline{L_n}, \overline{H_n})$ are definable in \mathcal{E} ?

(It suffices to show which are definable in \mathcal{E}^* [Lachlan])

•
$$L_0 = \{\mathbf{0}\}$$
: Definable by $\{\deg(\emptyset)\}$.

• $\overline{L_0} = \{ \mathbf{d} \mid \mathbf{d} > \mathbf{0} \}$: Definable by $\{ \deg(W) \mid \overline{W} \notin \mathcal{E} \}$.

We say a class of degrees C is *definable* if $C = \{ deg(W) \mid W \in S \}$ where S is a class of sets definable in E.

Question

Which classes of degrees are definable in \mathcal{E} ?

Question

Which jump classes $(L_n, H_n, \overline{L_n}, \overline{H_n})$ are definable in \mathcal{E} ?

•
$$L_0 = \{\mathbf{0}\}$$
: Definable by $\{\deg(\emptyset)\}$.

•
$$\overline{L_0} = \{ \mathbf{d} \mid \mathbf{d} > \mathbf{0} \}$$
: Definable by $\{ \deg(W) \mid \overline{W} \notin \mathcal{E} \}$.

A set A is maximal if A^* is a coatom of \mathcal{E}^* , i.e. if for all e,

$$A \subset W_e \implies W_e =^* A \text{ or } W_e =^* \omega.$$

Theorem (Martin, 1966)

 H_1 = the degrees of maximal sets.

A set A is maximal if A^* is a coatom of \mathcal{E}^* , i.e. if for all e,

$$A \subset W_e \implies W_e =^* A \text{ or } W_e =^* \omega.$$

Theorem (Martin, 1966)

 H_1 = the degrees of maximal sets.

- Lachlan [1968]: The atomless sets are contained in the class $\overline{L_2}$.
- Shoenfield [1976]: Every degree in L₂ contains an atomless set.
- Thus, $\overline{L_2} = \{ deg(A) \mid A \text{ atomless} \}.$

- Lachlan [1968]: The atomless sets are contained in the class $\overline{L_2}$.
- Shoenfield [1976]: Every degree in L₂ contains an atomless set.
- Thus, $\overline{L_2} = \{ deg(A) \mid A \text{ atomless} \}.$

- Lachlan [1968]: The atomless sets are contained in the class L₂.
- Shoenfield [1976]: Every degree in L₂ contains an atomless set.
- Thus, $\overline{L_2} = \{ deg(A) \mid A \text{ atomless} \}.$

- Lachlan [1968]: The atomless sets are contained in the class L₂.
- Shoenfield [1976]: Every degree in L₂ contains an atomless set.
- Thus, $\overline{L_2} = \{ deg(A) \mid A \text{ atomless} \}.$

Known results in 1986

Red = Definable Blue = Not definable

• **L**₀= {**0**}

•
$$\overline{L_0} = \{ \mathbf{d} \mid \mathbf{d} > \mathbf{0} \}$$

*H*₀= {0'}: Definable because the creative sets are definable [Harrington, 1986].

•
$$\overline{L_2} = \{ \mathbf{d} \mid \mathbf{d}'' > \mathbf{0}'' \}$$
 by Lachlan-Shoenfield

A class of sets $S \subseteq \mathcal{E}$ is *invariant* if it is closed under Aut(\mathcal{E}). A class of degrees C is *invariant* if $C = \{ deg(W) \mid W \in S \}$, where S is invariant.

- Definable classes are invariant.
- To show a class is not definable, we show it is noninvariant.

A class of sets $S \subseteq \mathcal{E}$ is *invariant* if it is closed under Aut(\mathcal{E}). A class of degrees C is *invariant* if $C = \{ deg(W) \mid W \in S \}$, where S is invariant.

Definable classes are invariant.

• To show a class is not definable, we show it is noninvariant.

A class of sets $S \subseteq \mathcal{E}$ is *invariant* if it is closed under Aut(\mathcal{E}). A class of degrees C is *invariant* if $C = \{ deg(W) \mid W \in S \}$, where S is invariant.

- Definable classes are invariant.
- To show a class is not definable, we show it is noninvariant.

Every noncomputable c.e. set is automorphic to a high set.

Corollary

All downward closed jump classes L_n , $\overline{H_n}$, $n \ge 1$, are noninvariant, and thus not definable.

Theorem (Harrington-Soare, 1996)

For all prompt sets A, there exists $B \equiv_T 0'$ such that $A \simeq B$.

Corollary

Every noncomputable c.e. set is automorphic to a high set.

Corollary

All downward closed jump classes L_n , $\overline{H_n}$, $n \ge 1$, are noninvariant, and thus not definable.

Theorem (Harrington-Soare, 1996)

For all prompt sets A, there exists $B \equiv_T 0'$ such that $A \simeq B$.

Corollary

Every noncomputable c.e. set is automorphic to a high set.

Corollary

All downward closed jump classes L_n , $\overline{H_n}$, $n \ge 1$, are noninvariant, and thus not definable.

Theorem (Harrington-Soare, 1996)

For all prompt sets A, there exists $B \equiv_T \mathbf{0}'$ such that $A \simeq B$.

Corollary

Every noncomputable c.e. set is automorphic to a high set.

Corollary

All downward closed jump classes L_n , $\overline{H_n}$, $n \ge 1$, are noninvariant, and thus not definable.

Theorem (Harrington-Soare, 1996)

For all prompt sets A, there exists $B \equiv_T \mathbf{0}'$ such that $A \simeq B$.

Corollary

The situation in 1996

Red = Definable		Blue = Not definable	
Upward Closed		Downward Closed	
<u>nonlow_n</u>	high _n	low _n	nonhigh _n
$\overline{L_0}$	H ₀	L ₀	$\overline{H_0}$
$\overline{L_1}$	H ₁	<i>L</i> ₁	$\overline{H_1}$
$\overline{L_2}$	H ₂	L ₂	$\overline{H_2}$
$\overline{L_3}$	H_3	L ₃	$\overline{H_3}$
:	•		:

The situation in 2002

Theorem (Cholak-Harrington, 2002)

For $n \ge 2$, H_n and $\overline{L_n}$ are definable.

Red = Definable		Blue = Not definable		
Upward Closed		Downward Closed		
nonlow _n	high _n	low _n	nonhigh _n	
$\overline{L_0}$	H ₀	L ₀	$\overline{H_0}$	
$\overline{L_1}$	H ₁	<i>L</i> ₁	$\overline{H_1}$	
$\overline{L_2}$	H ₂	L ₂	$\overline{H_2}$	
$\overline{L_3}$	H ₃	L ₃	$\overline{H_3}$	
:	÷	:	:	

Conjecture (Harrington-Soare, 1996)

 $\overline{L_1}$ is noninvariant.

Theorem (Epstein)

$\overline{L_1}$ is noninvariant, and thus not definable.

	Blue = Not definable
Upward	Closed
nonlow _n	high _n
$\overline{L_1}$	

Conjecture (Harrington-Soare, 1996)

 $\overline{L_1}$ is noninvariant.

Theorem (Epstein)

 $\overline{L_1}$ is noninvariant, and thus not definable.

Red = Definable	Blue = Not definat	ole	
Upwa	Upward Closed		
nonlo	ow _n high _n		
$\overline{L_0}$	H ₀		
$\overline{L_1}$	H ₁		
$\overline{L_2}$	H ₂		
$\overline{L_3}$	H ₃		
	÷		
There exists a nonlow D such that for all $A \leq_T D$, there exists a low set B such that $A \simeq B$.

Corollary (Epstein)

The nonlow degrees are noninvariant, and thus not definable.

Proof: Let $\mathbf{d} = \deg(D)$. Then \mathbf{d} is an $\overline{L_1}$ degree such that all sets in \mathbf{d} are automorphic to low sets.

• D must be L_2 .

• We will focus on a single set $A = \Psi^D$.

There exists a nonlow D such that for all $A \leq_T D$, there exists a low set B such that $A \simeq B$.

Corollary (Epstein)

The nonlow degrees are noninvariant, and thus not definable.

Proof: Let $\mathbf{d} = \deg(D)$. Then \mathbf{d} is an $\overline{L_1}$ degree such that all sets in \mathbf{d} are automorphic to low sets.

• D must be L_2 .

• We will focus on a single set $A = \Psi^{D}$.

There exists a nonlow D such that for all $A \leq_T D$, there exists a low set B such that $A \simeq B$.

Corollary (Epstein)

The nonlow degrees are noninvariant, and thus not definable.

Proof: Let $\mathbf{d} = \deg(D)$. Then \mathbf{d} is an $\overline{L_1}$ degree such that all sets in \mathbf{d} are automorphic to low sets.

• D must be L_2 .

• We will focus on a single set $A = \Psi^D$.

There exists a nonlow D such that for all $A \leq_T D$, there exists a low set B such that $A \simeq B$.

Corollary (Epstein)

The nonlow degrees are noninvariant, and thus not definable.

Proof: Let $\mathbf{d} = \deg(D)$. Then \mathbf{d} is an $\overline{L_1}$ degree such that all sets in \mathbf{d} are automorphic to low sets.

D must be L₂.

• We will focus on a single set $A = \Psi^D$.

Red = Things we are given Blue = Things we build

- Given an enumeration $\{U_n\}_{n \in \omega}$ of the c.e. sets, where $U_0 = A$.
- Build an enumeration $\{\widehat{U_n}\}_{n\in\omega}$ of the c.e. sets. Let $B=\widehat{U_0}$.
- We build $\widehat{U_n}$ so that $\Theta : U_n \mapsto \widehat{U_n}$ is an automorphism.

Red = Things we are given Blue = Things we build

- Given an enumeration $\{U_n\}_{n \in \omega}$ of the c.e. sets, where $U_0 = A$.
- Build an enumeration $\{\widehat{U_n}\}_{n\in\omega}$ of the c.e. sets. Let $B = \widehat{U_0}$.
- We build \widehat{U}_n so that $\Theta : U_n \mapsto \widehat{U}_n$ is an automorphism.

Red = Things we are given Blue = Things we build

- Given an enumeration $\{U_n\}_{n \in \omega}$ of the c.e. sets, where $U_0 = A$.
- Build an enumeration $\{\widehat{U_n}\}_{n\in\omega}$ of the c.e. sets. Let $B = \widehat{U_0}$.
- We build $\widehat{U_n}$ so that $\Theta : U_n \mapsto \widehat{U_n}$ is an automorphism.

Theorem (Harrington-Soare, 1996)

For all prompt sets A, there exists $B \equiv_T \mathbf{0}'$ such that $A \simeq B$.

Theorem (Cholak 1995, Harrington-Soare 1996)

For all noncomputable A, there exists B high such that $A \simeq B$.

- The Harrington-Soare machinery is inflexible.
- It does not allow us to restrain elements from falling into A.

Theorem (Harrington-Soare, 1996)

For all prompt sets A, there exists $B \equiv_T \mathbf{0}'$ such that $A \simeq B$.

Theorem (Cholak 1995, Harrington-Soare 1996)

For all noncomputable A, there exists B high such that $A \simeq B$.

- The Harrington-Soare machinery is inflexible.
- It does not allow us to restrain elements from falling into A.

Theorem (Harrington-Soare, 1996)

For all prompt sets A, there exists $B \equiv_T \mathbf{0}'$ such that $A \simeq B$.

Theorem (Cholak 1995, Harrington-Soare 1996)

For all noncomputable A, there exists B high such that $A \simeq B$.

- The Harrington-Soare machinery is inflexible.
- It does not allow us to restrain elements from falling into A.

Theorem (Harrington-Soare, 1996)

For all prompt sets A, there exists $B \equiv_T \mathbf{0}'$ such that $A \simeq B$.

Theorem (Cholak 1995, Harrington-Soare 1996)

For all noncomputable A, there exists B high such that $A \simeq B$.

- The Harrington-Soare machinery is inflexible.
- It does not allow us to restrain elements from falling into A.

Theorem (Harrington-Soare, 1996)

For all prompt sets A, there exists $B \equiv_T \mathbf{0}'$ such that $A \simeq B$.

Theorem (Cholak 1995, Harrington-Soare 1996)

For all noncomputable A, there exists B high such that $A \simeq B$.

- The Harrington-Soare machinery is inflexible.
- It does not allow us to restrain elements from falling into A.

 We must build an automorphism taking A ≤_T D down to a low set B.

• We restrain *B* to make it low, so we must also restrain *A*.

- We must build an automorphism taking A ≤_T D down to a low set B.
- We restrain *B* to make it low, so we must also restrain *A*.

- We must build an automorphism taking A ≤_T D down to a low set B.
- We restrain *B* to make it low, so we must also restrain *A*.

• This guarantees that no state is emptied by A.

- This restraint is actually on *D* since we only control *D*.
- Combining this with making *D* nonlow requires infinite injury.

- This guarantees that no state is emptied by A.
- This restraint is actually on *D* since we only control *D*.
- Combining this with making *D* nonlow requires infinite injury.

- This guarantees that no state is emptied by A.
- This restraint is actually on *D* since we only control *D*.
- Combining this with making *D* nonlow requires infinite injury.

This proves that there is a nonlow degree whose lower cone contains only sets automorphic to low sets.

Question

What else can we say about sets automorphic to low sets?

Theorem (Harrington-Soare, 1998)

There is a low₂ promptly simple set A with \overline{A} semi-low_{1.5} such that A is not automorphic to a low set.

This proves that there is a nonlow degree whose lower cone contains only sets automorphic to low sets.

Question

What else can we say about sets automorphic to low sets?

Theorem (Harrington-Soare, 1998)

There is a low₂ promptly simple set A with \overline{A} semi-low_{1.5} such that A is not automorphic to a low set.

- We usually build Δ⁰₃ automorphisms of *E*^{*}
- Which sets are Δ⁰₃-automorphic to low sets?

Conjecture (Cholak-Weber)

The sets with the Δ_3^0 -low shrinking property are precisely the sets Δ_3^0 -automorphic to low sets.

Definition (Maass, 1985)

A has the (Δ_3^0) low shrinking property if for any enumeration $\{W_e\}$ of the c.e. sets, there is a computable (Δ_3^0) function f such that

$$W_{f(e)} \subseteq W_e$$
 & $W_{f(e)} \cap \overline{A} =^* W_e \cap \overline{A}$,

and for all finite $I \subset \omega$

$$A \cap \bigcap_{i \in I} W_{f(i)}$$
 infinite $\implies \overline{A} \cap \bigcap_{i \in I} W_{f(i)}$ infinite.

Which sets are effectively automorphic to low sets?

- Soare [1982] showed that all sets with semilow complement are effectively automorphic to low sets, where S is semilow if {e : W_e ∩ S ≠ ∅} ≤_T 0'.
- Two conjectures:
 - A is effectively automorphic to a low set if \overline{A} is semilow.
 - A is effectively automorphic to a low set if A has the low shrinking property.
- Which sets are automorphic to low sets in general?
- This is a hard question!

- Which sets are effectively automorphic to low sets?
- Soare [1982] showed that all sets with semilow complement are effectively automorphic to low sets, where *S* is semilow if {*e* : *W_e* ∩ *S* ≠ ∅} ≤_T 0'.
- Two conjectures:
 - A is effectively automorphic to a low set if \overline{A} is semilow.
 - A is effectively automorphic to a low set if A has the low shrinking property.
- Which sets are automorphic to low sets in general?
- This is a hard question!

- Which sets are effectively automorphic to low sets?
- Soare [1982] showed that all sets with semilow complement are effectively automorphic to low sets, where *S* is semilow if {*e* : *W_e* ∩ *S* ≠ ∅} ≤_T 0'.
- Two conjectures:
 - A is effectively automorphic to a low set if \overline{A} is semilow.
 - A is effectively automorphic to a low set if A has the low shrinking property.
- Which sets are automorphic to low sets in general?
- This is a hard question!

- Which sets are effectively automorphic to low sets?
- Soare [1982] showed that all sets with semilow complement are effectively automorphic to low sets, where *S* is semilow if {*e* : *W_e* ∩ *S* ≠ ∅} ≤_T 0'.
- Two conjectures:
 - A is effectively automorphic to a low set if \overline{A} is semilow.
 - A is effectively automorphic to a low set if A has the low shrinking property.
- Which sets are automorphic to low sets in general?
- This is a hard question!

Question

Which sets are automorphic to complete sets?

 All prompt sets are △⁰₃-automorphic to complete sets (Harrington-Soare, 1996).

• No known conjectures.

Question

Which sets are automorphic to complete sets?

 All prompt sets are Δ⁰₃-automorphic to complete sets (Harrington-Soare, 1996).

• No known conjectures.

Question

Which sets are automorphic to complete sets?

- All prompt sets are Δ⁰₃-automorphic to complete sets (Harrington-Soare, 1996).
- No known conjectures.

Theorem (Harrington)

For all noncomputable c.e. sets A and all c.e. $C <_T \mathbf{0}'$, there is a c.e. set $B \not\leq_T C$ such that $A \simeq B$.

Question (Avoiding an upper cone)

For all c.e. sets A < 0' and noncomputable c.e. sets C, is there a c.e. set B, $C \not\leq_T B$, such that $A \simeq B$?

Theorem (R. Miller, 2002)

True for A low.

Corollary (Epstein, R. Miller)

There exists a nonlow c.e. set D such that for all $A \leq_T D$ and all $C >_T \mathbf{0}$, there is a c.e. set B, $C \not\leq_T B$ and $A \simeq B$.

Theorem (Harrington)

For all noncomputable c.e. sets A and all c.e. $C <_T \mathbf{0}'$, there is a c.e. set $B \not\leq_T C$ such that $A \simeq B$.

Question (Avoiding an upper cone)

For all c.e. sets A < 0' and noncomputable c.e. sets C, is there a c.e. set B, $C \not\leq_T B$, such that $A \simeq B$?

Theorem (R. Miller, 2002)

True for A low.

Corollary (Epstein, R. Miller)

There exists a nonlow c.e. set D such that for all $A \leq_T D$ and all $C >_T \mathbf{0}$, there is a c.e. set B, $C \not\leq_T B$ and $A \simeq B$.
Theorem (Harrington)

For all noncomputable c.e. sets A and all c.e. $C <_T \mathbf{0}'$, there is a c.e. set $B \not\leq_T C$ such that $A \simeq B$.

Question (Avoiding an upper cone)

For all c.e. sets A < 0' and noncomputable c.e. sets C, is there a c.e. set B, $C \not\leq_T B$, such that $A \simeq B$?

Theorem (R. Miller, 2002)

True for A low.

Corollary (Epstein, R. Miller)

There exists a nonlow c.e. set D such that for all $A \leq_T D$ and all $C >_T \mathbf{0}$, there is a c.e. set B, $C \not\leq_T B$ and $A \simeq B$.

Theorem (Harrington)

For all noncomputable c.e. sets A and all c.e. $C <_T \mathbf{0}'$, there is a c.e. set $B \not\leq_T C$ such that $A \simeq B$.

Question (Avoiding an upper cone)

For all c.e. sets $A < \mathbf{0}'$ and noncomputable c.e. sets C, is there a c.e. set B, $C \not\leq_T B$, such that $A \simeq B$?

Theorem (R. Miller, 2002)

True for A low.

Corollary (Epstein, R. Miller)

There exists a nonlow c.e. set D such that for all $A \leq_T D$ and all $C >_T \mathbf{0}$, there is a c.e. set B, $C \not\leq_T B$ and $A \simeq B$.

R. Epstein,

The nonlow computably enumerable degrees are not invariant, *Trans. Amer. Math. Soc.*, to appear.

L. Harrington and R. I. Soare,

The Δ_3^0 automorphism method and noninvariant classes of degrees,

Jour. Amer. Math. Soc., 9 (1996), 617–666.

Thanks for listening!