GOODNESS AND JUMP INVERSION IN THE ENUMERATION DEGREES.

CHARLES M. HARRIS DEPARTMENT OF MATHEMATICS, LEEDS, UK.

In this talk I will review recent work relating to jump inversion techniques and their application in the enumeration degrees. Underlying this research is, on the one hand the notion of a good approximation and, on the other, a fundamental characterisation of the enumeration jump in terms of index sets.

Definition 1.1 ([LS92, Har10]). A uniformly computable enumeration of finite sets $\{X_s\}_{s \in \omega}$ is said to be a *good approximation* to the set X if:

- (1) $\forall s (\exists t \ge s) [X_t \subseteq X]$
- (2) $\forall x [x \in X \quad \text{iff} \quad \exists t (\forall s \ge t) [X_s \subseteq X \Rightarrow x \in X_s]].$

In this case we say that X is good approximable. An enumeration degree a is said to be good if it contains a good approximable set. Otherwise it is said to be bad.

Definition 1.2. A set B is said to be *jump uniform under* \leq_{e} if, for any set A,

$$A \leq_{\mathbf{e}} J_B \quad \Leftrightarrow \quad \exists X [X \leq_{\mathbf{e}} B \& A = \{ e \mid X^{[e]} \text{ is finite} \}] \tag{1.1}$$

where J_B is notation for the enumeration jump of B and $X^{[e]}$ notation for the e^{th} column of X.

Note 1.3. Griffith proved in [Gri03] that (\Leftarrow) holds for any set B whereas (\Rightarrow) holds provided that $deg_e(B)$ is total (i.e. contains a total function). However, it turns out that (\Rightarrow) holds in the more general case of $deg_e(B)$ being good [Har10].

The notion of jump uniformity can be used directly to prove that, for any enumeration degrees a < b such that b is good there exists a degree $a \leq c < b$ such that b' = c' [Gri03, Har10]. Jump uniformity techniques are also particularly suitable for the study of the distribution of the local noncuppable enumeration degrees and of the properly Σ_2^0 enumeration degrees. (An enumeration degree $a < 0'_e$ is *noncuppable* if, for all $y < 0'_e$, $a \cup y \neq 0'_e$ and is *properly* Σ_2^0 if it contains no Δ_2^0 set.) Indeed, combined with a construction using the Turing Halting set \mathcal{K} as oracle, Cooper and Copestake's results on the distribution of the properly Σ_2^0 enumeration degrees [CC88] can be extended by showing, using only a finite injury argument, that there exists a high (i.e. $a'_e = 0'_e$) enumeration degree $a < 0'_e$ such that a is incomparable with any Δ_2^0 enumeration degree $0_e < c < 0'_e$ [Har11b]. Likewise these techniques can be applied via a finite injury proof to show the existence of a low₂ (i.e. $c'' = 0''_e$) noncuppable enumeration degree c, thus yielding an easy constructive version—in the special case of the low₂ enumeration degrees—of

Date: May 3, 2011.

Giorgi *et al*'s [GSY] proof that below every nonlow total Σ_2^0 enumeration degree **b** there exists a noncuppable enumeration degree.

The notion of jump uniformity can also be extended to to show that, for any good approximable set ${\cal X}$

$$InfSet(X) \equiv_{e} J_X^2 \tag{1.2}$$

where $InfSet(X) =_{def} \{ e \mid \Phi_e^X \text{ is infinite} \}$ and J_X^2 denotes the double enumeration jump of X.

Note 1.4. In fact $J_X^2 \leq_{\mathrm{e}} \operatorname{InfSet}(X)$ provided that $\operatorname{deg}_{\mathrm{e}}(X)$ is good whereas, for any set X, $\operatorname{InfSet}(X) \leq_{\mathrm{e}} J_X^2$.

The importance of this is that it gives us a more general methodology for the construction of a good—for example Σ_2^0 —enumeration degree a such that a' lies in a given interval. Specifically it was these techniques that were used to show that, for every enumeration degree $b \leq 0'_e$ there exists a noncuppable degree $0_e < a < 0'_e$ such that $b' \leq a'$ and $a'' \leq b''$ [Har11c].

Now, noting firstly that if $\mathbf{a} < \mathbf{0}'_{\rm e}$ is noncuppable then \mathbf{a} is properly downward Σ_2^0 (i.e. every $\mathbf{0}_{\rm e} < \mathbf{d} \leq \mathbf{a}$ is properly Σ_2^0) and that this also implies that \mathbf{a} is quasiminimal (i.e. bounds no nonzero total degree) we are naturally led to the question—given the ubiquity of the downwards properly Σ_2^0 degrees—of whether the distribution of the Δ_2^0 quasiminimal degrees has similar characteristics. In particular we can ask whether there exists Δ_2^0 enumeration degree $\mathbf{0}_{\rm e} < \mathbf{a} < \mathbf{0}'_{\rm e}$ such that \mathbf{a} is incomparable with every total degree $\mathbf{0}_{\rm e} < \mathbf{c} < \mathbf{0}'_{\rm e}$. However one half of this question is refuted in [ACK03] by the proof that there exists, for every Δ_2^0 enumeration degree $\mathbf{a} < \mathbf{0}'_{\rm e}$, a total degree $\mathbf{a} \leq \mathbf{c} < \mathbf{0}'_{\rm e}$. Hence only downward incomparability—i.e. quasiminimality—applies in the case of the Δ_2^0 enumeration degrees, so that the main question here is whether there exist Δ_2^0 quasiminimal enumeration degrees that are nonlow—since every quasiminimal low (i.e. $\mathbf{c}' = \mathbf{0}'_{\rm e}$) degree \mathbf{c} is Δ_2^0 . This question is addressed in [Har11a] where jump uniformity techniques are again employed—relative to $\mathbf{0}'_{\rm e}$ —to build a quasiminimal Δ_2^0 enumeration degree $\mathbf{a} < \mathbf{0}'_{\rm e}$ which is high.

Jump uniformity methods also provide a means of studying exactly where goodness breaks down in the arithmetical hierarchy. It can be deduced from the density of the good enumeration degrees [LS92] and Calhoun and Slaman's proof [CS96] of the nondensity of the Π_2^0 enumeration degrees that there exists a bad Π_2^0 degree \boldsymbol{a} such that $\boldsymbol{a}' \leq \mathbf{0}_{e''}^{\boldsymbol{v}}$. With this in mind, consider any Δ_2^0 enumeration degree \boldsymbol{c} . Then \boldsymbol{c} contains a set C such that both C and \overline{C} are Σ_2^0 and so both sets are good approximable. Hence the Π_2^0 degree $deg_e(\overline{C})$ is good. From this point of view—given that all low sets are Δ_2^0 —a tight bound on the breakdown of goodness can be displayed by showing the existence of a Σ_2^0 set X of low₂ jump complexity such that $\boldsymbol{y} = deg_e(\overline{X})$ is bad. (Note here that the low₂-ness of X also implies that $\boldsymbol{y}' \leq \mathbf{0}_{e''}^{\boldsymbol{v}}$.) This result is achieved by constructing \overline{X} via a $\Pi_1^{0,\mathcal{K}}$ approximation (i.e. using \mathcal{K} as oracle) while ensuring that \overline{X} is not jump uniform—so that $\boldsymbol{y} = deg_e(\overline{X})$ is bad—and, at the same time, ensuring that $InfSet(X) \in \mathbf{0}_{e''}^{\boldsymbol{v}}$ —which implies that $\boldsymbol{x}'' = \mathbf{0}_{e''}^{\boldsymbol{v}}$ using the fact that $\boldsymbol{x} =_{def} deg_e(X)$ is good, since X is Σ_2^0 [Har11a].

The main aim of the talk will be to present the fundamental ideas behind these results. I will conclude by describing a notion of *double jump uniformity* which

applies in the Σ_2^0 enumeration degrees, and also by explaining the latter's significance relative to open problems in the study of the distribution of the properly Σ_2^0 enueration degrees.

References

- [ACK03] M.M. Arslanov, S.B. Cooper, and I.Sh. Kalimullin. Splitting properties of total enumeration degrees. Algebra and Logic, 42(1):1–13, 2003.
- [CC88] S.B. Cooper and C.S. Copestake. Properly Σ₂⁰ enumeration degrees. Zeit. Math. Log. Grund. Math., 34:491–522, 1988.
- [CS96] W.C. Calhoun and T.A. Slaman. The Π⁰₂ enumeration degrees are not dense. Journal of Symbolic Logic, 61(4):1364–1379, 1996.
- [Gri03] E.J. Griffith. Limit lemmas and jump inversion in the enumeration degrees. Archive for Mathematical Logic, 42:553–562, 2003.
- [GSY] M. Giorgi, A. Sorbi, and Y. Yang. Properly Σ⁰₂ enumeration degrees and the high/low hierarchy. Journal of Symbolic Logic, 71(4):1125–1144.
- [Har10] C.M. Harris. Goodness in the enumeration and singleton degrees. Archive for Mathematical Logic, 49(6):673–691, 2010.
- [Har11a] C.M. Harris. Badness and jump inversion in the enumeration degrees. Submitted for Publication, 2011.
- [Har11b] C.M. Harris. Noncuppable enumeration degrees via finite injury. Journal of Logic and Computation, doi:10.1093/logcom/exq044, 2011.
- [Har11c] C.M. Harris. On the jump classes of noncuppable enumeration degrees. Journal of Symbolic Logic, 76(1):177–197, 2011.
- [LS92] H. Lachlan and R.A. Shore. The n-rea enumeration degrees are dense. Archive for Mathematical Logic, 31:277–285, 1992.

E-mail address: harris.charles@gmail.com

URL: http://www.maths.leeds.ac.uk/~charlie